
ADOBE® ILLUSTRATOR®

USING THE ADOBE TEXT
ENGINE

 2022 Adobe Incorporated. All rights reserved.

Using the Adobe Text Engine with Illustrator 2023

Technical Note #10502

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software
described in it, is furnished under license and may be used or copied only in accordance with the terms of such license.
Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written
permission of Adobe Incorporated. Please note that the content in this guide is protected under copyright law even if it
is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Incorporated. Adobe Incorporated assumes no responsibility or liability for any
errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under
copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of
the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to
refer to any actual organization.

Adobe, the Adobe logo, and Illustrator are either registered trademarks or trademarks of Adobe Incorporated in the
United States and/or other countries. Microsoft is either a registered trademark or trademark of Microsoft Corporation in
the United States and/or other countries. All other trademarks are the property of their respective owners.

Adobe Incorporated, 345 Park Avenue, San Jose, California 95110, USA. Notice to U.S. Government End Users. The
Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of
“Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48
C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through
227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software Documentation are
being licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those rights as are granted
to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright
laws of the United States. Adobe Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government
End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the provisions
of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974
(38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1
through 60-60, 60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence
shall be incorporated by reference.

 3

1 About Adobe Text Engine

This document describes how to use the Adobe text engine—the text API provided by the Adobe®
Illustrator® 2023 SDK—in your Illustrator plug-ins. It describes text-related use cases that solve typical
programming problems such as inserting, deleting, and styling text.

The Adobe Text Engine (ATE) is the library that provides support for text to Adobe Illustrator. ATE was
introduced in Illustrator CS (Illustrator 11.0) to replace the suites that provided text support in earlier
versions of the product. The API described here is specific to Adobe Illustrator, and supports these major
features:

 Unicode.

 OpenType.

 Advanced typography like optical kerning, optical margin alignment, automatic glyph replacement,
and glyph scaling.

 Character and paragraph styles.

 Asian text features like MojiKumi, Kinsoku, and composite fonts.

Terminology
This document uses the following terms:

ATE Adobe Text Engine.

DOM Document Object Model.

Feature A visual attribute applied to a paragraph or character, like justification or font size.

Glyph run A composed range of text, converted to glyphs and ready to draw.

Legacy Illustrator CS5 or earlier.

SDK The software development kit for Illustrator 2020.

NOTE: In paths, <SDK> indicates your locally installed SDK root folder. The actual root folder
depends on the installation and operating system.

SLO The Former name for the Adobe text engine. In the context of Illustrator, this refers to the
internal Adobe text engine library.

Story A container for a range of text flowing over one or more text frames.

Style A named container for a set of features.

Text frame An object that displays a range of text.

Text line A line of text composed to fit the width of a text frame.

CHAPTER 1: About Adobe Text Engine Text API components 4

NOTE: Figures in this document that describe ATE components and their relationships generally figures
conform to a basic UML class-diagram specification; for readability. they have been limited to show only
class names, associations, cardinality and a one-word description of the association. For more information
on UML see http://www.uml.org/.

Text API components
The text API comprises suites and wrapper classes that together provide an interface to the text in a
document. Most of the API features are provided through the wrapper classes, with the suites providing
extra support and functionality.

Illustrator text suites

Illustrator provides several text-related suites, notably the following:

Text run A non-composed range of text with the same features.

Visual C++ Microsoft® Visual Studio 2017, using the C++ environment.

http://www.uml.org/

CHAPTER 1: About Adobe Text Engine Text API components 5

 AITextFrameSuite — Provides management functions for kTextFrameArt art objects and allows
access to the ITextFrame object associated with a kTextFrameArt art object.

 AITextFrameHitSuite — Provides a reference to which element of a text frame was hit, given an
AIHitRef containing positional information.

Adobe text engine wrapper classes

You plug-in code should use the C++ helper classes declared in the header file
<SDK>/illustratorapi/ate/ITexh.h to work with text programatically. All C++ helper classes
provided by IText.h begin with the letter I:

ITextFrame
ITextLine
ITextRange
ICharFeatures
ICharInspector
ICharStyle
IParaFeatures
IParaInspector
IParaStyle

These are some key wrapper classes within the Adobe text engine API:

 ITextFrame — The main class controlling the layout of text in the document. ITextFrame provides
access to the contained text range, lines, and the parent story.

 IStory — A flow of text in a document. This flow can be spread across many lines, paragraphs, and
text frames. An IStory provides access to the contained text range, paragraphs, words, text runs, and
text frames related to the IStory, as well as all the other stories contained in the current document.

 ITextRange/ITextRanges — A text range is a range of characters from a start offset to an end offset,
which can flow over words, paragraphs, text frames, and stories. The ITextRange and ITextRanges
classes provide access to iterators that traverse the contained words, text runs, paragraphs, stories,
frames, and lines and can access the glyphs, features, and styles that are used.

 IDocumentTextResources — Provides access to text resources in a document, such as fonts and
styles.

Adobe text engine suites

The Adobe text engine suites in <SDK>/illustratorapi/ate/ATESuites.h provide the low-level
interface to text. Normally, your plug-in code should not call these suites directly; instead, use the Adobe
text engine wrapper classes provided by IText.h/IText.cpp. The wrappers call the suites for you and make
text programming easier.

Adobe text engine wrapper classes are compiled by your plug-in, so you must add IText.cpp to your
project to use them. Adobe text engine suites are part of Illustrator, and the suites declared in the header
file ATESuites.h allows them to be called.

CHAPTER 1: About Adobe Text Engine Using API documentation 6

Using API documentation
The Adobe text engine wrappers and Illustrator text suites are documented in the API Reference, which
is provided with the SDK. See Getting Started with Adobe Illustrator 2023 Development for details of how to
access and use this documentation; it is available both as a searchable, compiled help file, and as straight,
browsable HTML.

In the step-by-step instructions for various text operations, this manual lists the API suites and classes of
interest, as well as the particular code samples that illustrate the operation.

Adobe Illustrator

Text

ATE suites

ATE wrappers AI text
suites

Illustrator plug-in

 7

2 Getting started with the text API in your plug-in

This chapter will help you get started with samples. It explains how to configure your project to use the
Adobe text engine, and how to perform basic text operations with the API.

Exploring text with SDK samples
SnippetRunner is a plug-in that lets you run code snippets provided in the SDK. SnpText is one of several
code snippets provided in the SDK that demonstrate the manipulation of text objects in a document.

To run snippet samples:

1. Run Illustrator 2023 with the SnippetRunner plug-in loaded. For instructions on loading an Illustrator
plug-in, see Getting Started with Adobe Illustrator 2020 Development.

2. If the SnippetRunner panel is not visible, select Window > SDK > SnippetRunner.

3. In the SnippetRunner panel, expand the hierarchical list of operations under the Text item.

4. Familiarize yourself with the operations.

5. Browse through the sample code of the text snippet in
<SDK>/samplecode/codesnippets/SnpText.cpp.

For more examples of manipulating text items, see these code snippets:

 SnpTextIterator — Shows how to find text in Illustrator documents.

 SnpText — Shows how to create, link, and delete text frames, plus how to insert, delete, replace, and
move characters.

 SnpTextStyler — Shows how to modify the visual appearance of text, through applying and clearing
character and paragraph features.

 SnpTextStyles — Shows how to create, edit, apply, clear, and delete named paragraph and character
styles.

 SnpTextException — Shows how to throw and catch an Adobe text engine exception.

These non-snippet samples in the Illustrator 2020 SDK also use the text API:

 TextFileFormat

 MarkedObjects

Adding text support to your plug-in
For your plug-in to use the Adobe text engine API, it must compile the Adobe text engine wrapper classes
and acquire the necessary suites for these classes during start-up.

 In Visual C++, follow these steps to add the required source code:

1. Add <SDK>/illustratorapi/ate/IText.cpp to the list of project source files.

CHAPTER 2: Getting started with the text API in your plug-in Accessing text 8

2. Right-click IText.cpp in the Solution Explorer and choose Properties.

3. Under C/C++ > Precompiled Headers, set Create/Use Precompiled Header to Not Using Precompiled
Headers.

4. Repeat with <SDK>/illustratorapi/ate/IThrowException.cpp.

 In Xcode, add IText.cpp and IThrowException.cpp to the project source files.

In the source code, follow these steps:

1. Add the following include instruction to the file that contains the definition of the suite pointers. (See
<SDK>/samplecode/MarkedObjects/Source/MarkedObjectsSuites.h.)

#include "ATETextSuitesImportHelper.h"

2. Add EXTERN_TEXT_SUITES to the list of external suite pointers. (See
<SDK>/samplecode/MarkedObjects/Source/MarkedObjectsSuites.cpp.)

3. Add IMPORT_TEXT_SUITES to the list of suites and suite versions to be imported. (See
<SDK>/samplecode/MarkedObjects/Source/MarkedObjectsSuites.cpp.)

If you use a structure to pass in all the suite names, versions, and pointers, it must match the
text-wrapper suite pointers:

typedef struct {
char* name;
int version;
void* suite;
} ImportSuite;

4. Add any Illustrator text suites you normally require, such as AITextFrameSuite. (See
<SDK>/samplecode/MarkedObjects/Source/MarkedObjectsSuites.cpp.)

Handling errors from the text API

The Adobe text engine provides an Exception class that reports an error of type ATEErr if an exception is
thrown when using Adobe text engine wrapper classes. Using the ATE::Exception class in your code
enables your plug-in to catch any unexpected runtime errors from the Adobe text engine.

 Wrap all code using the Adobe text engine wrappers in a try block.

 Add a catch block that catches an ATE::Exception and reports its internal error to the plug-in.

Refer to the API reference documentation for ATE::Exception, and examine the sample code in
SnpTextException::ThrowATEException.

Accessing text
This section describes the two basic methods for accessing text in a document; from the current selection,
or from the artwork tree.

CHAPTER 2: Getting started with the text API in your plug-in Accessing text 9

Accessing text using selection

To access the selected text in the current document, use AIDocumentSuite to get the TextRangesRef,
then create a new ITextRanges object using the TextRangesRef.

The new ITextRanges object provides access to the selected text and the containing text frames. By
traversing the other containers, like IStory and IStories, you also can access all the unselected text in
the document.

The following code sample is taken from SnpTextIterator::IterateSelectedTextFrames. It shows
how to create an ITextRanges object containing the selected text:

TextRangesRef rangesRef = NULL;
ASErr result = sAIDocument->GetTextSelection(&rangesRef);
aisdk::check_ai_error(result);
ITextRanges ranges(rangesRef);

To get the text frames containing the selected text, iterate through each ITextRange in the ITextRanges
set, and get the text frames associated with each text range:

ITextRange range = ranges.Item(rangeIndex);
ITextFramesIterator framesIter = range.GetTextFramesIterator();

Alternately, to access the collection of stories in the current document, using code similar to
SnpTextIterator::IterateSelectedStories, get the first ITextRange from the ITextRanges object,
get the associated IStory for the ITextRange, and then get the IStories set from the IStory object:

ITextRange range = ranges.Item(0);
IStory story = range.GetStory();
IStories stories = story.GetStories();

Accessing text using the artwork tree

To access the text in a document through the artwork tree, you must first find the text frame art in the
document, then convert the AIArtHandle for each text frame to an ITextFrame object. The ITextFrame
object provides access to its associated ITextRange.

The following code samples are taken from SnpTextIterator::IterateTextFrames.

1. Create an art set containing all the text art in the current document:

AIArtSpec specs[1] = {{kTextFrameArt, 0, 0}};
SnpArtSetHelper textFrameArtSet(specs, 1);

2. For each art item found, convert to an ITextFrame then get the ITextRange:

AIArtHandle textFrameArt = textFrameArtSet[artIndex];
TextFrameRef textFrameRef = NULL;
ASErr result = sAITextFrame->GetATETextFrame(textFrameArt, &textFrameRef);
aisdk::check_ai_error(result);
ITextFrame textFrame(textFrameRef);
ITextRange textRange = textFrame.GetTextRange();

 10

3 Iterating through text

This chapter describes how to find and examine text objects—text frames, lines, stories, paragraphs,
words, and characters—in Illustrator documents.

Iterating through text frames
A text frame is represented by an ITextFrame object. Its purpose is to control the layout of a text range
into lines and columns. A text frame can contain several text lines and a text range, which is the text
currently displayed in the text frame. When text frames are linked (threaded) together, the content they
display comes from one associated story. (Text that overruns the text frame is not included in the contents
of the text frame’s text range.)

To work iterate through text frames:

1. Find the text frames to iterate. You can do this via the current selection using
AIDocumentSuite::GetTextSelection, then get the text frames from the text ranges. Alternatively,
you can get the selected kTextFrameArt using AIMatchingArtSuite::GetMatchingArt or by
traversing the artwork tree.

ITextFrame ITextFramesIterator

ITextLine

ITextLinesIterator

ITextRange

IStory

AITextFrameSuite

«struct»
TextFrameRef

+gets
1

1

+gets
1

1

+iterates

1

1+gets

11

+gets
1

1

+gets
1

1

+gets 1

1

+provides

1

+uses 1

1

CHAPTER 3: Iterating through text Iterating through lines 11

2. If you are working with ITextRanges, visit each text frame in a text range using an
ITextFramesIterator, by calling ITextRange::GetTextFramesIterator. If you are working with
an art set, access each text frame through the art-set index.

3. If you are working with an AIArtHandle, use AITextFrameSuite::GetATETextFrame to get a
TextFrameRef then construct a new ITextFrame object using the TextFrameRef.

4. Get the text range inside the text frame, using ITextFrame::GetTextRange.

5. Get the string contents, using ITextRange::GetContents.

API Refer-
ence

AIDocumentSuite
AIMatchingArtSuite
ITextFrame
AITextFrameSuite
ITextRange

Sample
code

SnpText::LinkTextFrames
SnpTextIterator::IterateSelectedTextFrames
SnpTextIterator::IterateTextFrames

Iterating through lines
A line of text in a text frame is represented by an ITextLine object.

To iterate through lines:

1. Get the text frame or frames; see “Iterating through text frames” on page 10.

ITextLine

ITextLinesIterator ITextFrame

ITextRangeIGlyphRun

IGlyphRunsIterator

+gets
1 1

+gets
11

+iterates 1

0..*
+gets
1 1

+gets
1

1

+gets 1

1

CHAPTER 3: Iterating through text Glyph runs and text runs 12

2. For each text frame, get the ITextLinesIterator using ITextFrame::GetTextLinesIterator, and
use this object to iterate the text lines.

3. Get the text range in the line, using ITextLine::GetTextRange.

4. Get the string contents, using ITextRange::GetContents.

API Refer-
ence

ITextFrame
ITextFrames
ITextFramesIterator
ITextLine
ITextLinesIterator
ITextRange

Sample
code

SnpTextIterator::IterateGlyphRuns
SnpTextIterator::IterateLinesInSelectedFrames

Glyph runs and text runs
A glyph run is represented by an IGlyphRun object. It describes characters in a composed form that is
ready to be drawn.

An IGlyphRun differs from an IGlyph in that an IGlyph does not have a set of characters and is a
document resource rather than a text container.

A text run is a range of text that shares one set of stylistic attributes. There is no object representing a single
text run; however, there is an ITextRunsIterator object that can be accessed via ITextRanges,
ITextRange, IStory, IStories, and IGlyphs objects, which provides access to each text run in the
containing object.

IGlyphRun

IGlyphRunsIterator

ITextLineICharFeatures

+iterates 1

0..* +gets 1

1

+gets

1 1

+gets

11

CHAPTER 3: Iterating through text Glyph runs and text runs 13

Iterating through glyph runs

To iterate through glyph runs:

1. Get the text lines; see “Iterating through lines” on page 11.

2. For each text line, get the IGlyphRunsIterator using ITextLine::GetGlyphRunsIterator.

3. Access each glyph using a while or for loop and IGlyphRunsIterator::IsNotDone,
IGlyphRunsIterator::Item, and IGlyphRunsIterator::Next.

4. Get the string contents of each glyph run, using IGlyphRun::GetContents.

API Refer-
ence

IGlyphRun
IGlyphRunsIterator
ITextFrame
ITextFramesIterator
ITextLine
ITextLinesIterator

Sample
code

SnpTextIterator::IterateGlyphRuns

ITextRunsIteratorIGlyphs

ITextRanges ITextRange

IStory

IStories

+gets

1 1

+gets

1

1

+gets

1

1

+gets

11

+gets 1

1

CHAPTER 3: Iterating through text Glyph runs and text runs 14

Iterating through text runs

To iterate through text runs:

1. Find the text runs to iterate. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. Get the iterator object, using ITextRanges::GetTextRunsIterator; or, in the case of a line
containing a mixture of right-to-left (RTL) and left-to-right (LTR) text, use
ITextRanges::GetVisualGlyphRunsIterator.

3. Iterate through each of the text-run text ranges, using a while or for loop and
ITextRunsIterator::IsNotDone, ITextRunsIterator::Item, and ITextRunsIterator::Next.

4. Get the string contents of the text range, using ITextRange::GetContents.

API Refer-
ence

AIDocumentSuite
ITextRange
ITextRanges
ITextRunsIterator

Sample
code

SnpTextIterator::IterateTextRuns

CHAPTER 3: Iterating through text Characters, words, and paragraphs 15

Characters, words, and paragraphs
The words within a text range, paragraph, story, or glyph can be accessed through an IWordsIterator
object.

A paragraph of text is represented by an IParagraph object, which can be obtained from an IStory,
ITextRange, or ITextRanges object, and in turn contains IGlyphs and an IWordsIterator. The
paragraphs in a text range can be accessed using an IParagraphsIterator.

IWordsIterator

IStory

ITextRange

ITextRanges

IGlyphs

IParagraph

IStories

+gets

1

1

+gets
1

1

+gets
1

+iterates
1

+gets
11

+gets 1

1
+gets 1

1

CHAPTER 3: Iterating through text Characters, words, and paragraphs 16

Iterating through characters

To iterate through characters:

1. Find the text range containing the characters to iterate. You can do this either via the current selection
using AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected
in the current document) or by traversing the artwork tree.

2. Access the character at each index of the ITextRange object.

API Refer-
ence

AIDocumentSuite
ITextRange
ITextRanges

Sample
code

SnpTextIterator::IterateSelectedCharacters

Iterating through words

To iterate through words:

1. Find the text range containing the words to iterate. You can do this either via the current selection
using AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected
in the current document) or by traversing the artwork tree.

2. Iterate words using IWordsIterator.

API Refer-
ence

AIDocumentSuite
ITextRange

IParagraph

IStory ITextRange

ITextRanges

IWordsIterator

IParagraphsIterator

+iterates

1
0..* +gets

1

1

+gets

11

+gets
1 1

+gets 1

1

+gets
1

1

CHAPTER 3: Iterating through text Characters, words, and paragraphs 17

ITextRanges
IWordsIterator

Sample
code

SnpTextIterator::IterateSelectedWords

Iterating through paragraphs

To iterate through paragraphs:

1. Find the text range containing the paragraphs to iterate. You can do this either via the current
selection using AIDocumentSuite::GetTextSelection (which provides a reference to the text
ranges selected in the current document) or by traversing the artwork tree.

2. Get an IParagraphsIterator object by calling a function that returns one, such as
ITextRanges::GetParagraphsIterator or IStory::GetParagraphsIterator.

3. Iterate the paragraphs using IParagraphsIterator.

4. Get the string contents of a paragraph using IParagraph::GetContents.

API Refer-
ence

AIDocumentSuite
IParagraph
IParagraphsIterator
ITextRange
ITextRanges

Sample
code

SnpTextIterator::IterateSelectedParagraphs

CHAPTER 3: Iterating through text Iterating through stories 18

Iterating through stories
A story is represented by an IStory object; a collection of stories, by an IStories object. A story contains
text ranges, text frames, text runs, paragraphs, and words. An IStory object can be accessed through an
ITextRange object using ITextRange::GetStory.

To iterate through stories:

1. Find the text ranges containing the stories to iterate. You can do this either via the current selection
using AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected
in the current document) or by traversing the artwork tree.

2. Iterate through each text range, getting that text range’s associated story using
ITextRange::GetStory.

3. Get the string contents of the story: first get the entire text range of the story using
IStory::GetTextRange, then get the text-range contents using ITextRange::GetContents.

API Refer-
ence

AIDocumentSuite
IStory
ITextRange
ITextRanges

Sample
code

SnpTextIterator::IterateSelectedStories

IStories IStory

IInhibitReflow

IDocumentTextResources

ITextRanges

ITextRange

+gets 1

1

+gets 1

1

+gets
11

+gets
1

1

+gets
1

1

+contains
1 0..*

+has
1

1

+gets 1

1

CHAPTER 3: Iterating through text Iterating through text ranges 19

Iterating through text ranges
A range of text is represented by an ITextRange object. It can flow across several text frames and can
contain several paragraphs, words, characters, text runs, and glyphs. Each text range is contained within an
IStory. For a discussion of text-range-related use cases see “Creating text” on page 21.

To iterate through text ranges:

1. Find the text ranges to iterate. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. Access each ITextRange object by indexing the ITextRanges object.

3. Get the string contents of each text range using ITextRange::GetContents.

API Refer-
ence

AIDocumentSuite
ITextRange
ITextRanges

ITextRangesITextRange

ITextFramesIterator
ITextRangesIterator

IParagraphsIterator

ITextRunsIterator

IWordsIterator

+gets
1

+iterates
1

+contains
10..*

+gets

1

1

+iterates
1

0..*

+gets
1

1

+gets

1

1

+gets
1

1

+gets
1

1

+gets 1

1

CHAPTER 3: Iterating through text Iterating through kern types 20

Sample
code

SnpText::DeleteTextRange
SnpTextIterator::IterateGlyphRuns
SnpTextIterator::IterateKernTypes
SnpTextIterator::IterateSelectedStories
SnpTextIterator::IterateSelectedTextFrames
SnpTextIterator::IterateSelectedTextRanges
SnpTextIterator::IterateTextRuns
SnpTextStyles::ApplyCharacterStyle
SnpTextStyles::ApplyParagraphStyle

Iterating through kern types
Kern types are managed at the story level. See “Setting kern type” on page 27.

To iterate through kern types

1. Find the text range to iterate. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. Get the story using ITextRange::GetStory.

3. Iterate through each character in the story. For each character, get the kern type using
IStory::GetModelKernAtChar.

API Refer-
ence

AIDocumentSuite
IStory
ITextRange

Sample
code

SnpTextIterator::IterateKernTypes

 21

4 Manipulating text

This chapter covers basic text-manipulation use cases, including creating, linking, and deleting text frames
and inserting, deleting, copying, moving, and selecting text.

Creating text
There are various kinds of text. The following section describe how to create:

 Point text

 In-path text

 On-path text

 Threaded in-path text

Point text

To create a new point-text item in a document:

1. Get the group in the layer you want to contain your new text object, using
AIArtSuite::GetFirstArtOfLayer.

2. Add the new point-text object to the layer, using AITextFrameSuite::NewPointText.

3. Set the contents of the text range, using AITextFrameSuite::GetATETextRange and either
ITextRange::InsertAfter or ITextRange::InsertBefore.

API Refer-
ence

AIArtSuite
AITextFrameSuite
ITextRange

Sample
code

SnpText::CreatePointText

In-path text

TO create a new in-path text item in a document:

1. Get the group in the layer you want to contain your new text object, using
AIArtSuite::GetFirstArtOfLayer.

2. Create a new path item on the current layer, using AIArtSuite::NewArt.

3. Add the new in-path text item to the current layer using AITextFrameSuite::NewInPathText, and
set its path item to the newly added path.

4. Set the contents of the text range using AITextFrameSuite::GetATETextRange and either
ITextRange::InsertAfter or ITextRange::InsertBefore.

CHAPTER 4: Manipulating text Creating text 22

API Refer-
ence

AIArtSuite
AITextFrameSuite
ITextRange

Sample
code

SnpText::ArtHandleFromRect
SnpText::CreateInPathText

On-path text

T create a new on-path text item in a document:

1. Get the group in the layer you want to contain your new text object, using
AIArtSuite::GetFirstArtOfLayer.

2. Create a new path item on the current layer, using AIArtSuite::NewArt.

3. Add the new on-path text item to the current layer using AITextFrameSuite::NewOnPathText, and
set its path item to the newly added path.

4. Set the contents of the text range using AITextFrameSuite::GetATETextRange and either
ITextRange::InsertAfter or ITextRange::InsertBefore.

API Refer-
ence

AIArtSuite
AITextFrameSuite
ITextRange

Sample
code

SnpText::ArtHandleFromArc
SnpText::CreateOnPathText

Threaded in-path text

You can create several linked in-path text items in a document which display a single story. You can link
text frames to allow one story to be associated with more than one text frame. Once linked, the story text
is displayed across all the frames.

1. Get the group in the layer you want to contain your new text object, using
AIArtSuite::GetFirstArtOfLayer.

2. Create a new path item on the current layer to display the start of your threaded text, using
AIArtSuite::NewArt.

3. Add the new in-path text item to the current layer using AITextFrameSuite::NewInPathText, and
set its path item to the newly added path.

4. Set the contents of the text range using AITextFrameSuite::GetATETextRange and either
ITextRange::InsertAfter or ITextRange::InsertBefore.

5. Create another path item on the current layer to continue displaying the threaded text, using
AIArtSuite::NewArt.

6. Add another in-path text item to the current layer, using AITextFrameSuite::NewInPathText. Set its
path item to the newly added path, and set its prep and base frame to the previous in-path text item.

7. Repeat steps 5 and 6 for each path item you want to continue displaying the text story.

To create threaded on-path text, follow the step for On-path text, but replace all occurrences of
NewInPathText with NewOnPathText, and add the extra parameters for the start and end segments.

CHAPTER 4: Manipulating text Selecting text 23

API Refer-
ence

AIArtSuite
AITextFrameSuite
ITextRange

Sample
code

SnpText::ArtHandleFromRect
SnpText::CreateThreadedInPathText

Selecting text
You can highlight a range of text in the current document using ITextRanges::Select or
ITextRange::Select.

1. Find the text range.

 To highlight text in the currently selected text frame, follow the instructions in “Accessing text
using selection” on page 9 to find the selected text range.

 To highlight any text range, regardless of whether it is selected in the current document, follow
the instructions in “Accessing text using the artwork tree” on page 9 to find a text range.

2. Once you have an ITextRanges or ITextRange object, select the text in the text range using
ITextRanges::Select or ITextRange::Select, respectively.

API Refer-
ence

AIDocumentSuite
ITextRanges

Sample
code

SnpText::SelectTextRange
SnpTextIterator::IterateSelectedTextFrames
SnpTextIterator::IterateTextFrames

Text focus
If a document has text focus, it is ready for text to be input into a text frame. This is different than selecting
text, as selecting text does not necessarily mean the document has text focus. For example, calling
ITextRange::Select highlights the text in a text range but does not set the text focus.

You can programmatically set or remove text focus. Text focus is set through the AIDocumentSuite at the
story level.

Setting text focus

1. Find the text range to give text focus to. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. Ensure the current document does not already have text focus, by selecting a non-text tool in the tool
palette using AIToolSuite::SetSelectedTool.

3. Get the story containing the text range to gain text focus, using ITextRange::GetStory.

4. Set the text focus to the beginning of the story using AIDocumentSuite::SetTextFocus, passing in
the StoryRef.

API Refer-
ence

AIDocumentSuite
AIToolSuite

CHAPTER 4: Manipulating text Inserting text 24

IStory
ITextRange
ITextRanges

Sample
code

SnpText::SetTextFocus

Removing text focus

1. Find out if the current document has text focus, using AIDocumentSuite::HasTextFocus.

2. Lose the text focus using AIDocumentSuite::LoseTextFocus.

API Refer-
ence

AIDocumentSuite

Sample
code

SnpText::LoseTextFocus

Inserting text
To insert a range of text into a selected text range:

1. Find the text range where the text is to be inserted. You can do this either via the current selection
using AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected
in the current document) or by traversing the artwork tree.

2. Once the correct area is found, insert the text using ITextRange::InsertBefore or
ITextRange::InsertAfter.

API Refer-
ence

AIDocumentSuite
ITextRange
ITextRanges

Sample
code

SnpText::InsertText

Copying and moving text
You can copy or move text to a new text item, within story bounds, or into another story.

Copy

To copy a selected range of text to a new text item:

1. Find the text range to be copied. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. Get the text frame associated with the text range, using ITextRange::GetStory::GetFrame,
ITextFrame::GetRef, and AITextFrameSuite::GetAITextFrame.

3. Create a new path item to contain the copied text frame using AIArtSuite::NewArt. Use dimensions
similar to the text frame containing the text range being copied.

CHAPTER 4: Manipulating text Replacing and deleting text 25

4. Create a new text item to contain the copied range, using AITextFrameSuite::NewInPathText,
AITextFrameSuite::NewPointText, or AITextFrameSuite::NewOnPathText.

5. Copy the text range using ITextRange::Clone.

6. Insert the text in the copied text frame, using AITextFrameSuite::GetATETextRange and either
ITextRange::InsertAfter or ITextRange::InsertBefore.

Move

To move a selected range of text from one text item to a new text item:

1. Find the text range to be moved. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. To move the text range within the current story bounds, use ITextRange::Move, specifying the
number of units the range should be moved in a positive (toward the end) or negative (toward the
start) direction.

3. To move the text range into a new or existing story, follow the instructions for Copy, but with the
added step of deleting the text range from its original position using ITextRange::Remove.

API Refer-
ence

AIDocumentSuite
AITextFrameSuite
ITextFrame
ITextRange
ITextRanges

Sample
code

SnpText::ArtHandleFromRect
SnpText::MoveText
SnpText::CopyText

Replacing and deleting text
You can programmatically remove text, or remove it and replace it with different text

Delete

To delete the selected text range:

1. Find the text range to be deleted. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. Remove the text range using ITextRange::Remove.

Replace

To replace the selected text range with a new text range:

1. Find the text range to be replaced. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

CHAPTER 4: Manipulating text Linking text frames 26

2. Remove the text range using ITextRange::Remove.

3. Insert the new text range using ITextRange::InsertBefore or ITextRange::InsertAfter.

API Refer-
ence

AIDocumentSuite
ITextRange
ITextRanges

Sample
code

SnpText::DeleteTextRange
SnpText::ReplaceText

Linking text frames
When you create a link between selected text frames, their contents become a single story. When you
remove links between selected text frames, you split the text frames’ contents into separate stories.

Linking

1. Find the text frames to link. You can do this either via the current selection using
AIArtSetSuite::MatchingArtSet with an AIArtSpec specifying selected kTextFrameArt, or by
traversing the artwork tree.

2. Link a text frame with another using AITextFrameSuite::Link and passing in the two text frames to
link.

Unlinking

1. Find the text frames to unlink. You can do this either via the current selection using
AIArtSet::MatchingArtSet with an AIArtSpec specifying selected kTextFrameArt, or by
traversing the artwork tree.

2. Check whether the text frame is linked to another frame, using
AITextFrameSuite::PartOfLinkedText and passing in the text frame in question.

3. Unlink the text frame using AITextFrameSuite::Unlink.

API Refer-
ence

AIArtSetSuite
AIArtSpec
AITextFrameSuite

Sample
code

SnpText::LinkTextFrames
SnpText::UnlinkTextFrames

Deleting text frames
To delete a text-frame art item from a document:

1. Find the text frame to delete. You can do this via the current selection using
AIDocumentSuite::GetTextSelection, then either getting the text frames from the text ranges or
getting the selected kTextFrameArt using AIMatchingArtSuite::GetMatchingArt. Alternately,
you can traverse the artwork tree.

2. If you are working with an ITextFrame object, get the AIArtHandle for the text frame by first calling
ITextFrame::GetRef, then AITextFrameSuite::GetAITextFrame.

CHAPTER 4: Manipulating text Converting legacy text 27

3. A text frame is also an art object, so you can delete the object using the AIArtSuite. If you are
working with an art object, delete it using AIArtSuite::DisposeArt.

API Refer-
ence

AIArtSuite
AIDocumentSuite
AITextFrameSuite
ITextFrame

Sample
code

SnpText::LinkTextFrames
SnpText::UnlinkTextFrames
SnpTextIterator::IterateSelectedTextFrames

Converting legacy text
To convert legacy text in a document to work with the ATE API:

1. Convert all legacy text in the current document using
AILegacyTextConversionSuite::ConvertAllToNative.

2. Convert a single text item using AILegacyTextConversionSuite::ConvertToNative.

API Refer-
ence

AILegacyTextConversionSuite

Sample
code

SnpText::ConvertLegacyText

Setting kern type
A kern type is an Illustrator constant that refers to the algorithm used to calculate the spacing between
characters. These types of kerning are defined:

 kNoAutoKern — There is no automatic altering of the spacing between characters to improve their
appearance together.

 kMetricKern — Uses a metrics table to determine the amount of space each character requires.

 kMetricRomanOnlyKern — This should be the default kern type for Asian text. It provides kerning to
Roman text without affecting any surrounding Asian text.

 kOpticalKern — Uses the glyphs’ shapes to kern the characters as they appear to the eye.

Kern types are managed at the story level. To set the kern type of a range of text:

1. Find the text range to edit. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. Get the story using ITextRange::GetStory.

3. Set the kern type of the text range of the story using IStory::SetKernForSelection.

API Refer-
ence

AIDocumentSuite
IStory
ITextRange

CHAPTER 4: Manipulating text Setting kern type 28

Sample
code

SnpTextStyler::SetKernType

 29

5 Styling text

This chapter describes how to examine, create, update, and delete character and paragraph styles and
how to style text.

Character styles
The character styles associated with a document are contained in an ICharStyles set that contains zero
or more ICharStyle objects.

 To access the entire set of character styles for a document, use IDocumentTextResources.

 To access the character styles applied to particular text ranges, use ITextRange.

ITextRange

ITextRanges

ITextRangesIterator

ICharFeatures IParaFeatures

ICharInspector IParaInspector

IParaStylesICharStyles

+contains
1

0..*

+iterates 1

0..*

+gets/sets 1

1

+gets/sets

11

+gets/sets
1

1

+gets/sets

1 1

+gets
1

1
+gets

1
1

+gets
1

1
+gets

1

1

+uses1

1
+uses

1

1

CHAPTER 5: Styling text Character styles 30

A named character style contains an ICharFeatures object, which contains the attributes to be applied to
the characters. When applied, it overrides the character attributes inherited from the Normal character
style.

API Refer-
ence

AIDocumentSuite
ICharStyle
ICharStyles
ICharStylesIterator
IDocumentTextResources
ITextRange
AIATECurrentTextFeaturesSuite

Sample
code

SnpTextStyles::IterateCharacterStyles
SnpTextStyles::CreateCharacterStyle
SnpTextStyles::GetCurrentCharacterStyle
SnpTextStyles::DeleteCharacterStyle
SnpTextStyles::ApplyCharacterStyle
SnpTextStyles::ClearCharacterStyle

Iterating through character styles

1. Get the current document text resources set. Use AIDocumentSuite::GetDocumentTextResources
to get the DocumentTextResourcesRef, and then use it to create a new IDocumentTextResources
object.

2. Get the documents’ ICharStyles object using
IDocumentTextResources::GetCharStylesInDocument.

3. Create a new ICharStylesIterator using the ICharStyles object.

ICharStyle ICharStylesICharFeatures

IDocumentTextResources

ICharStylesIterator

ITextRange

+uses

1

1

+iterates

1

0..*

+gets

1

1

+gets 1

1..* +uses 1

1

+contains

10..*

+contains

11

CHAPTER 5: Styling text Character styles 31

4. Iterate through each ICharStyle in the ICharStyles object using
ICharStylesIterator::MoveToFirst, ICharStylesIterator::Item, and
ICharStylesIterator::Next.

Creating a character style

To add a new named character style to a document’s text resources:

1. Get the current document text resources set. Use AIDocumentSuite::GetDocumentTextResources
to get the DocumentTextResourcesRef, and then use it to create a new IDocumentTextResources
object.

2. Create a new ICharStyle object using IDocumentTextResources::CreateCharStyle.

3. Create a new ICharFeatures object, and set the desired features using the ICharFeatures’
members.

4. Set the features of the ICharStyle using ICharStyle::SetFeatures, passing in the ICharFeatures
object.

Getting the current character style

To find the character style currently in use in a document:

1. Get the CharStyleRef to the current style applied to new text items, using
AIATECurrentTextFeaturesSuite::GetCurrentCharStyle.

2. Create a new ICharStyle object from the CharStyleRef.

3. Access the features of the style in use using ICharStyle::GetFeatures, or access the name using
ICharStyle::GetName.

Deleting a character style

To delete a named character style from a document’s text resources:

1. Get the current document text resources set. Use AIDocumentSuite::GetDocumentTextResources
to get the DocumentTextResourcesRef, and then use it to create a new IDocumentTextResources
object.

2. Delete the desired ICharStyle using IDocumentTextResources::RemoveCharStyle, passing in the
style name as a parameter.

Applying a character style

To apply a named character style to a range of text:

1. Find the text range to apply the character style to. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

CHAPTER 5: Styling text Character styles 32

2. Get the current document text resources set. Use AIDocumentSuite::GetDocumentTextResources
to get the DocumentTextResourcesRef, and then use it to create a new IDocumentTextResources
object.

3. Get the ICharStyle you want applied to the text range using
IDocumentTextResources::GetCharStyle, passing in the name of the character style.

4. Apply the character style to the text range using ITextRange::SetNamedCharStyle.

Clearing a character style

To clear a named character style from a range of text:

1. Find the text range from which to clear the character style. You can do this either via the current
selection using AIDocumentSuite::GetTextSelection (which provides a reference to the text
ranges selected in the current document) or by traversing the artwork tree.

2. Clear the character style from the text range, using ITextRange::ClearNamedCharStyle.

Clearing the character style from a text range using this function only disassociates the text range with
the character style,. The character features are still applied to the text range.

3. Clear the overriding character features, returning the text range to the Normal character style using
ITextRange::ClearLocalCharFeatures.

CHAPTER 5: Styling text Paragraph styles 33

Paragraph styles
The paragraph styles associated with a document are contained in an IParaStyles set, which contains
zero or more IParaStyle objects.

 To access the entire set of paragraph styles for a document, use IDocumentTextResources.

 To access the paragraph styles applied to particular text ranges, use ITextRange.

A named paragraph style contains an IParaFeatures object that contains the attributes to be a applied
to the paragraphs. When applied, it overrides the paragraph attributes inherited from the Normal
paragraph style.

API Refer-
ence

AIDocumentSuite
IDocumentTextResources
AIATECurrentTextFeaturesSuite
IParaFeatures
IParaStyle
IParaStyles
IParaStylesIterator
ITextRange

Sample
code

SnpTextStyles::IterateParagraphStyles
SnpTextStyles::CreateParagraphStyle
SnpTextStyles::GetCurrentParagraphStyle
SnpTextStyles::DeleteParagraphStyle
SnpTextStyles::ApplyParagraphStyle
SnpTextStyles::ClearParagraphStyle

IParaStyle

IParaStyles

IParaStylesIterator

IDocumentTextResources

IParaFeatures

ITextRange

+gets 1 1+gets 1

1..* +uses 1

1

+iterates

10..*

+uses 1

1

+contains

1

0..*

+contains

11

CHAPTER 5: Styling text Paragraph styles 34

Iterating through paragraph styles

1. Get the current document text resources set. Use AIDocumentSuite::GetDocumentTextResources
to get the DocumentTextResourcesRef, and then use it to create a new IDocumentTextResources
object.

2. Get the document’s IParaStyles object, using
IDocumentTextResources::GetParaStylesInDocument.

3. Create a new IParaStylesIterator, using the IParaStyles object.

4. Iterate through each IParaStyle in the IParaStyles object, using
IParaStylesIterator::MoveToFirst, IParaStylesIterator::Item, and
IParaStylesIterator::Next.

Creating a paragraph style

To add a new named paragraph style to a document’s text resources:

1. Get the current document text resources set. Use AIDocumentSuite::GetDocumentTextResources
to get the DocumentTextResourcesRef, and then use it to create a new IDocumentTextResources
object.

2. Create a new IParaStyle object, using IDocumentTextResources::CreateParaStyle.

3. Create a new IParaFeatures object, and set the desired features using the IParaFeatures’
members.

4. Set the features of the IParaStyle using IParaStyle::SetFeatures, passing in the IParaFeatures
object.

Getting current paragraph style

To find the paragraph style currently in use in the current document:

1. Get the ParaStyleRef to the current style applied to new text items, using
AIATECurrentTextFeaturesSuite::GetCurrentParaStyle.

2. Create a new IParaStyle object from the ParaStyleRef.

3. Access the features of the style in use using IParaStyle::GetFeatures, or access the name using
IParaStyle::GetName.

Deleting a paragraph style

To delete a named paragraph style from a document’s text resources:

1. Get the current document text resources set. Use AIDocumentSuite::GetDocumentTextResources
to get the DocumentTextResourcesRef, and then use it to create a new IDocumentTextResources
object.

2. Delete the desired IParaStyle using IDocumentTextResources::RemoveParaStyle, passing in the
style name as a parameter.

CHAPTER 5: Styling text Paragraph styles 35

Applying a paragraph style

To can apply a named paragraph style to a range of text:

1. Find the paragraph to which to apply the paragraph style. You can do this either via the current
selection using AIDocumentSuite::GetTextSelection (which provides a reference to the text
ranges selected in the current document) or by traversing the artwork tree.

2. Get the current document text resources set. Use AIDocumentSuite::GetDocumentTextResources
to get the DocumentTextResourcesRef, and then use it to create a new IDocumentTextResources
object.

3. Get the IParaStyle you want applied to the paragraph using
IDocumentTextResources::GetParaStyle, passing in the name of the paragraph style.

4. Apply the paragraph style to the text range, using ITextRange::SetNamedParaStyle.

Clearing a paragraph style

To clear a named paragraph style from a range of text:

1. Find the paragraph from which to clear the paragraph style. You can do this either via the current
selection using AIDocumentSuite::GetTextSelection (which provides a reference to the text
ranges selected in the current document) or by traversing the artwork tree.

2. Clear the paragraph style from the text range, using ITextRange::ClearNamedParaStyle.

Clearing the paragraph style from a text range using this function only disassociates the text range
with the paragraph style. The paragraph features are still applied to the text range.

3. Clear the overriding paragraph features, returning the text range to the Normal character style using
ITextRange::ClearLocalParaFeatures.

CHAPTER 5: Styling text Working with character features 36

Working with character features
Characters initially inherit the Normal style, but these features can be overridden at the character or
character-style level. This use case examines the styling applied to a range of characters.

API Refer-
ence

AIDocumentSuite
ICharFeatures
ICharInspector
ICharStyle
ITextRange
ITextRanges
AIATECurrentTextFeaturesSuite

Sample
code

SnpTextStyler::GetCharacterFeatures
SnpTextStyler::InspectSelectedCharacterFeatures
SnpTextStyler::ApplyLocalCharacterFeatures
SnpTextStyler::ClearLocalCharacterFeatures
SnpTextStyler::SetCurrentCharacterOverrides

Getting character features

1. Find the text range containing the characters whose features you want. You can do this either via the
current selection using AIDocumentSuite::GetTextSelection (which provides a reference to the
text ranges selected in the current document) or by traversing the artwork tree.

ICharFeatures ICharStyleIParaFeatures

ITextRanges

IDocumentTextResources

IGlyphRun
ITextRange

IApplicationPaint

ICharInspector

+gets/sets 1
1

+gets 1

1

+gets

1

1

+gets

1

1

+gets/sets 1

1

+gets

11

+gets/sets

1 1
+contains

11

+gets/sets
1

1

CHAPTER 5: Styling text Working with character features 37

2. Get the character features used in the text range, using either
ITextRange::GetUniqueCharFeatures (to get the character features that have the same value
across all text runs in the text range) or ITextRange::GetUniqueLocalCharFeatures (to get the
overriding features that have the same value across all text runs in the text range).

Alternatively, use ITextRange::GetCharInspector to return an ICharInspector object that
provides access to the features of all characters in the text range.

3. Use the returned ICharFeatures or ICharInspector object to access and edit the individual
features.

Applying character features

To apply a set of styling attributes to a range of characters:

1. Find the range of characters whose features you want to edit. You can do this either via the current
selection using AIDocumentSuite::GetTextSelection (which provides a reference to the text
ranges selected in the current document) or by traversing the artwork tree.

2. Create an ICharFeatures object, and use this object’s members to set the features you want.

3. Apply the features to the range of characters using ITextRange::SetLocalCharFeatures, passing in
your feature set.

Only the features specified in the ICharFeatures set are modified; other features are unchanged.

Clearing character features

To clear styling attributes from a range of characters:

1. Find the range of characters whose features you want to edit. You can do this either via the current
selection using AIDocumentSuite::GetTextSelection (which provides a reference to the text
ranges selected in the current document) or by traversing the artwork tree.

2. Clear the local features applied to the text range using ITextRange::ClearLocalCharFeatures,
returning the features to the Normal character style.

3. To remove a single feature, create a new ICharFeatures object, set the feature you want to be
removed to its value in the Normal character style, then apply the feature set using
ITextRange::SetLocalCharFeatures.

Setting current character overrides

To set the overriding styling attributes applied to new characters:

1. Create a new ICharFeatures object, and set the desired individual features using the ICharFeatures
member functions.

2. Get the CharFeaturesRef object from the ICharFeatures object, using ICharFeatures::GetRef.

3. Set the features to be applied to new text items, using
AIATECurrentTextFeaturesSuite::SetCurrentCharOverrides.

CHAPTER 5: Styling text Working with paragraph features 38

Working with paragraph features
Paragraphs initially inherit the Normal style, but these features can be overridden at the paragraph or
paragraph-style level. This use case examines the styling applied to a structured paragraph of text.

API Refer-
ence

AIDocumentSuite
IParagraph
IParaFeatures
IParaInspector
IParaStyle
ITextRange
ITextRanges
AIATECurrentTextFeaturesSuite

Sample
code

SnpTextStyler::InspectSelectedParagraphFeatures
SnpTextStyler::ApplyLocalParagraphFeatures
SnpTextStyler::ClearLocalParagraphFeatures
SnpTextStyler::SetCurrentParagraphOverrides

Getting paragraph features

1. Find the text range containing the paragraphs whose features you want. You can do this either via the
current selection using AIDocumentSuite::GetTextSelection (which provides a reference to the
text ranges selected in the current document) or by traversing the artwork tree.

IParaFeatures

ICharFeatures

IMojikumi

IKinsoku

IParaStyle

ITextRange

ITextRanges

ITabStops

IParaInspector

+gets/sets
1

1

1

+gets/sets
1

1

+gets/sets
1

+contains

1

1 +gets/sets 1
1

+gets/sets 1

1

+gets/sets

11

+gets

1 1

+gets 1
1

CHAPTER 5: Styling text Working with paragraph features 39

2. Get the paragraph features used in the text range, using either
ITextRange::GetUniqueParaFeatures (to get the paragraph features used in the text range that
have the same value across all text runs in the text range) or
ITextRange::GetUniqueLocalParaFeatures (to get the overriding features that have the same
value across all text runs in the text range). Alternately, use ITextRange::GetParaInspector to
return an IParaInspector object that provides access to the features of all paragraphs in the text
range.

3. Use the returned IParaFeatures or IParaInspector object to access and edit the individual
features.

Applying paragraph features

To apply a set of styling attributes to a set of paragraphs:

1. Find the range of paragraphs whose features you want to edit. You can do this either via the current
selection using AIDocumentSuite::GetTextSelection (which provides a reference to the text
ranges selected in the current document) or by traversing the artwork tree.

2. Create an IParaFeatures object, and use this object’s members to set the features you want.

3. Apply the features to the range of paragraphs using ITextRange::SetLocalParaFeatures, passing
in your feature set.

Only the features specified in the IParaFeatures set are modified; other features are unchanged.

Clearing paragraph features

To clear a set of styling attributes from a set of paragraphs:

1. Find the range of paragraphs whose features you want to edit. You can do this either via the current
selection using AIDocumentSuite::GetTextSelection (which provides a reference to the text
ranges selected in the current document) or by traversing the artwork tree.

2. Clear the local features applied to the text range using ITextRange::ClearLocalParaFeatures,
returning the features to the Normal paragraph style.

3. To remove a single feature, create a new IParaFeatures object, set the feature you want to be
removed to its value in the Normal paragraph style, and then apply the feature set using
ITextRange::SetLocalParaFeatures.

Setting current paragraph overrides

To set the overriding styling attributes applied to new paragraphs:

1. Create a new IParaFeatures object, and set the desired individual features using the
IParaFeatures’ member functions.

2. Get the ParaFeaturesRef object from the IParaFeatures object, using IParaFeatures::GetRef.

3. Set the paragraph features to be applied to new text items, using
AIATECurrentTextFeaturesSuite::SetCurrentParaOverrides.

CHAPTER 5: Styling text Working with tab stops 40

Working with tab stops
A tab stop is represented by an ITabStop object. Tab stops are added to and removed from paragraphs
through an IParaFeatures object. A set of tab stops is represented by an ITabStops object and can be
iterated using an ITabStopsIterator.

API Refer-
ence

AIDocumentSuite
IArrayTabStopsRef
IParaFeatures
IParagraph
IParaInspector
ITabStop
ITabStops
ITextRange
ITextRanges

Sample
code

SnpTextStyler::AddTabStops
SnpTextStyler::RemoveTabStops
SnpTextStyler::InspectSelectedParagraphTabStops

Adding tab stops

To add tab stops to a paragraph or set of paragraphs:

1. Find the paragraph to which the tab stop should be added. You can do this either via the current
selection using AIDocumentSuite::GetTextSelection (which provides a reference to the text
ranges selected in the current document) or by traversing the artwork tree.

2. Create a new ITabStop object.

3. Set the position of the new tab stop using ITabStop::SetPosition.

4. Create a new ITabStops object.

5. Add the tab stop to the new tab stops set, using ITabStops::ReplaceOrAdd.

IParaFeatures

ITabStopITabStops

ITabStopsIterator

+contains

1 0..*

+gets/sets 1

1

+iterates 1

0..*

CHAPTER 5: Styling text Working with tab stops 41

6. Get the text range of the paragraph, using IParagraph::GetTextRange.

7. Get the IParaFeatures of the text range, using ITextRange::GetUniqueParaFeatures.

8. Set the tab stops attribute of the text-range features, using IParaFeatures::SetTabStops.

9. Apply the new features to the text range, using ITextRange::SetLocalParaFeatures.

Removing tab stops

To remove tab stops from a paragraph or set of paragraphs.

1. Find the paragraph from which to remove the tab stop. You can do this either via the current selection
using AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected
in the current document) or by traversing the artwork tree.

2. Get the paragraph text range, using IParagraph::GetTextRange.

3. Get the text range’s IParaFeatures object, using ITextRange::GetUniqueParaFeatures.

4. Get the ITabStops object associated with the text range, using IParaFeatures::GetTabStops.

5. Remove a single tab stop using ITabStops::Remove, passing in the index of the tab stop to remove,
or remove all tab stops using ITabStops::RemoveAll.

6. Set the tab stops of the IParaFeatures object to the edited tab-stop set, using
IParaFeatures::SetTabStops.

7. Apply the edited feature set to the paragraph text range, using
ITextRange::SetLocalParaFeatures.

Inspecting tab stops

To find the tab stop in a paragraph or set of paragraphs:

1. Find the paragraph to inspect. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. Get the text range of the paragraph, using IParagraph::GetTextRange.

3. Get the IParaInspector object for the text range, using ITextRange::GetParaInspector.

4. Get the array of tab stops objects using IParaInspector::GetTabStops, returning an
IArrayTabStopsRef object.

5. Iterate through the IArrayTabStopsRef object, getting each ITabStops object using
IArrayTabStopsRef::Item.

6. Iterate through each item of the ITabStops set, getting each individual ITabStop object using
ITabStops::Item.

7. Get the tab-stop information, using the members provided in the ITabStop class.

 42

6 Using document and application text resources

This chapter describes how to work with text resources such as fonts, and text services such as spell
checking and find-and-replace.

 IDocumentTextResources provides access to the text resources of a document, such as fonts, styles,
and text-related services like spell checking and find-and-replace.

 IApplicationTextResources provides access to the application’s Asian text resources such as
IMojiKumiSet, IKinsokuSet, and ICompFontSet.

Iterating through fonts
Use AIFontSuite::CountFonts and AIFontSuite::IndexFontList to iterate through all fonts available
in the document.

To iterate through each font currently in use in the current documents’ text items:

1. Find the first text frame in the document, using the instructions in “Accessing text using the artwork
tree” on page 9.

2. Use the ITextFrame object to get the IStories set for the document, by first accessing the IStory
for the text frame, and then getting the IStories container for the IStory object.

3. Get the ITextRanges object from the IStories object, using IStories::GetTextRanges.

ICharFeatures

IFontICompFontComponent

«struct»
FontRef

AIFontSuite

ICharInspector

IArrayFontRef+gets
1 1

+gets 1

1 +provides 1

1

+uses
1

1

+contains

10..*

+gets 1

1

CHAPTER 6: Using document and application text resources Finding and replacing text 43

4. Get the ICharInspector for the ITextRanges, to gain access to all the character features used in the
document.

5. Get the IArrayFontRef container, using ICharInspector::GetFont.

6. Iterate through the IArrayFontRef container. For each FontRef, get the associated AIFontKey using
AIFontSuite::FontKeyFromFont and the FontRef.

API Refer-
ence

AIFontSuite
IArrayFontRef
ICharInspector
IStories
IStory
ITextFrame
ITextRanges

Sample
code

SnpText::IterateAllFonts
SnpText::IterateUsedFonts

Finding and replacing text
The find-and-replace Adobe text engine feature, represented by the IFind object, allows you to search
through text items for specific text strings and, if desired, replace each occurrence with another text string.

1. Find the paragraph to inspect. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. Get the current document text resources set. Use AIDocumentSuite::GetDocumentTextResources
to get the DocumentTextResourcesRef, and then use it to create a new IDocumentTextResources
object.

3. Create a new IFind object, using IDocumentTextResources::GetFind.

4. Set the search string, using IFind::SetSearchChars.

5. Set the replace string, using IFind::SetReplaceChars.

6. Save the current and start positions of the text range, using IFind::GetPreReplaceAllSettings.

7. Set the text range to search, using IFind::SetSearchRange.

8. Loop through the text range, searching and replacing with the specified strings, using
IFind::FindMatch and IFind::ReplaceMatch.

9. Restore the current and start positions of the text range, using
IFind::RestorePreReplaceAllSettings.

IFindIDocumentTextResources +gets

1 1

CHAPTER 6: Using document and application text resources Checking spelling 44

API Refer-
ence

AIDocumentSuite
IDocumentTextResources
IFind

Sample
code

SnpText::FindAndReplace

Checking spelling
The Adobe text engine’s spell checker, represented by the ISpell object, allows you to configure and
perform spell checks on text items in an Illustrator document. It supports 46 languages and language
variants.

1. Find the paragraph to inspect. You can do this either via the current selection using
AIDocumentSuite::GetTextSelection (which provides a reference to the text ranges selected in
the current document) or by traversing the artwork tree.

2. Get the folder to the Illustrator dictionary folder, using AIFolderSuite::FindFolder and passing in
kAIDictionariesFolderType.

3. Define a new SpellRef, using AITextUtilSuite::GetSpellFile and passing in the ai::FilePath
to the Illustrator dictionary folder.

4. Create a new ISpell object from the SpellRef.

5. Loop through the text range, searching for unknown words, using
ISpell::FindOneMisspelledWord.

6. Get the Illustrator dictionary’s list of alternate suggestions, using ISpell::GetWordListContents.

API Refer-
ence

ai::FilePath
AIDocumentSuite
AIFolderSuite
AITextUtilSuite
ISpell

Sample
code

SnpText::RunSpellCheck

ISpellIDocumentTextResources +gets

1 1

 45

7 Porting to this Release

This chapter describes changes and new features in this release of the Adobe text engine.

New data types
In this release, we have improved calculation precision in all the mathematical operations, in order both to
improve the quality of art and to make operations such as rotation, scaling, and dragging more accurate.

To do this, we have generally replaced the use of the C/C++ float data type with the double data type. In
AITypes.h, the type of AIReal has been changed from float to double. Other data types such as
AIRealMatrix , AIRealPoint, andAIRealRect have been similarly updated.

The data type ASReal, which was defined as a float, it has been completely removed from the API, in
order to prevent confusion and possible type conflicts. This means that the signature of many functions
has changed.

Data types in ATE have been replaced as follows:

New helper functions
New functions have been added to convert between floating-point and real numbers:

void ATEFloatPointToATERealPoint (const ATETextDOM::FloatPoint *f,
ATETextDOM::RealPoint *r)

void ATEFloatMatrixToATERealMatrix(const ATETextDOM::FloatMatrix *f,
ATETextDOM::RealMatrix *r)

Former type Replaced by type

ASInt32 ATETextDOM::Int32

ASUnicode* ATETextDOM::Unicode*

ASReal ATETextDOM::Real
—or—
ATETextDOM::Float

ASRealMatrix ATETextDOM::RealMatrix
—or—
ATETextDOM::FloatMatrix

ASRealPoint TETextDOM::FloatPoint*
—or—
ATETextDOM::RealPoint

	About Adobe Text Engine
	Terminology
	Text API components
	Illustrator text suites
	Adobe text engine wrapper classes
	Adobe text engine suites

	Using API documentation

	Getting started with the text API in your plug-in
	Exploring text with SDK samples
	Adding text support to your plug-in
	Handling errors from the text API

	Accessing text
	Accessing text using selection
	Accessing text using the artwork tree

	Iterating through text
	Iterating through text frames
	Iterating through lines
	Glyph runs and text runs
	Iterating through glyph runs
	Iterating through text runs

	Characters, words, and paragraphs
	Iterating through characters
	Iterating through words
	Iterating through paragraphs

	Iterating through stories
	Iterating through text ranges
	Iterating through kern types

	Manipulating text
	Creating text
	Point text
	In-path text
	On-path text
	Threaded in-path text

	Selecting text
	Text focus
	Setting text focus
	Removing text focus

	Inserting text
	Copying and moving text
	Copy
	Move

	Replacing and deleting text
	Delete
	Replace

	Linking text frames
	Linking
	Unlinking

	Deleting text frames
	Converting legacy text
	Setting kern type

	Styling text
	Character styles
	Iterating through character styles
	Creating a character style
	Getting the current character style
	Deleting a character style
	Applying a character style
	Clearing a character style

	Paragraph styles
	Iterating through paragraph styles
	Creating a paragraph style
	Getting current paragraph style
	Deleting a paragraph style
	Applying a paragraph style
	Clearing a paragraph style
	Working with character features
	Getting character features
	Applying character features
	Clearing character features
	Setting current character overrides

	Working with paragraph features
	Getting paragraph features
	Applying paragraph features
	Clearing paragraph features
	Setting current paragraph overrides

	Working with tab stops
	Adding tab stops
	Removing tab stops
	Inspecting tab stops

	Using document and application text resources
	Iterating through fonts
	Finding and replacing text
	Checking spelling

	Porting to this Release
	New data types
	New helper functions

