MIPS

by Imagination

MIPS® Architecture For Programmers
Volume lI-A: The MIPS64® Instruction
Set Reference Manual

Document Number: MD00087
Revision 6.06
December 15, 2016

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Com-
panies. All rights reserved.

MIPS;Y

Public. This publication contains proprietary information which is subject to change without notice and is supplied ‘asis’, without any warranty of any kind.

Template: nB1.03, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS32 MI1PS64

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Contents

[T-T o3 (=T g T Y o Yo T UL I 1= = o T 14
3 R Y/ o ToTo [=T o] g Toz= TN @7 T V=Y o1 oo < U OTR 15
L P 1 €= VT = S PP PP PPPPPP 15

L = = o] (o = T PSP P PPPPP 15

LIPS G T o 10 1= g 1= SRR RUPSRRIN 15

1.2: UNPREDICTABLE and UNDEFINEDcoocuiiiiiiiiiiie ettt e st e e snee e e sne e e e e 15
1.2.1: UNPREDICTABLE ...ttt ettt e bt e e e bt e e e n b e e e embe e e anbe e e snbee e e rnbeeesnneaaan 15
1.2.2: UNDEFINED ...ttt ettt ettt ettt b et e e e bt e e e e ae e e e amee e e embe e e ambe e e smneeeenseeernbeeeanneaean 16
T.2.80 UNSTABLE ...ttt ettt e h e ek et e e sat e e e eat e e e ambe e e sabe e e ambe e e emneeeenteeeanbeeeanneaean 16
1.3: Special Symbols in Pseudocode NOTAtION..........cocuiiiiiiie e 16
1.4: Notation for Register Field ACCESSIDIlIYeiiiiiiiiiie e 19
1.5: FOr MOre INFOMMELION ...ttt e e s e e e anb e e e s aannne s 21
Chapter 2: Guide to the InStruction Set..........ccocirmiiii e ————————— 22
2.1: Understanding the INStruCtioN FIelASeiii it 22
P2 I O 1 W (o7 1] I =Y o RO 24
2.1.2: Instruction Descriptive Name and MNemONIC..........uuiiiiiiiiiiieiiiiiee et 24

P2 IR i o ¢ o= L T o RO 24

P2 B S T g oo 1= 1= [RSP RPPT 25

P2 IR B LY Yo g o] 1] o I =Y o PO RPP 25
2.7.6: RESICHONS FIEIA. ...ttt e st e e s e nbb e e e e s annnre s 25
2.1.7: Availability and Compatibility FIEIAScoiuiiiiiiiii e 26

P IR S @ o T=T = o o I 1= [RO RPP 27
2.1.9: EXCEPLONS FIIA. ...ttt e bbbt e e s bt e e s e nbb e e e e s annnneeas 27
2.1.10: Programming Notes and Implementation Notes Fields..............cooiiiiiiiii e, 27
2.2: Operation Section Notation and FUNCHONSuiiii i 28
2.2.1: InStruction EXECULION OFGEIINGeiiiiiuiiiiii ittt et e e e e e e s b e e e e s annneeas 28
2.2.2: PSEUAOCOAE FUNCLIONS.eeiiiiiiiiiii ettt ettt e e sttt e e et b e e e e s bb e e e e s annnneeas 28
2.3: Op and Function Subfield NOTAtION..........ouuiiii e e e 40
2.4 FPU INSTIUCHIONS ...ttt ettt e oo bttt e e e e eab et e e e e bt et e e e e aabbe e e e s eanbeeeeesaabbneeeeaas 40
Chapter 3: The MIPS64® INStruction Set.........ccccccemmmmiiiiiiisssenerrrss 42
3.1: Compliance and SUDSEIING......couuiiiiieie e 42
3.1.1: Subsetting of Non-Privileged ArchiteCtUIec.ooiiiiiiii e 42
3.2: Alphabetical List Of INSIIUCTIONSeeiiiieiiii e e e e e e e eee s 44
F NS 0) TSP T PP PTUUPPPT PRSPPI 45
N | SO PPPTUUPPPUPPRURIN 46

F N 1B o | ST ST PP UUPPPTUPPRRIN 47

F N | T OO PR TUPPPUPPRURIN 48
AADDIU .t h R hE R R et oR R e e e eR b e e e oA R e e e e R e e e e b e et e R e e e e he e e e nne e e nr e e e anbeeennneeea 49
ADDIUPQC ...ttt ettt e e b et e ket ek e e R b e R b e e eR R e e e eA R et e e AR et e o b et e e R et e e ane e e nteeeanbeeennneeeas 50
AADDWU ..ttt b bR e a R e R R et oh R e e e eR R e e e oA R e e e e R e e e e Re et e R e e e e he e e e nbe e e nr e e e anbeeennneeeas 51
ALIGIN DALIGN ...ttt h ettt ekt e kbt e e a bt e e 4a b et e oa b e e e ea ket e e bs e e e be e e e nbeeenreeeanbeeennnneea 52

F N L ST PSP PP OPPPPUPPRUPIN 54
ALUIPC .ttt b ekt e o bt 4o s b et ek et e £ aR b et e R R e e e oA R e e e oA R e e e e R et e e R et e e Re e e e ane e e nreeeanbe e e nnneeeas 56
AN bbb et e R e e E et e e R R e e R b et e eR R et e oA R et e eREe e e o b e e e e bRt e e nbe e e nr e e e anbeeeanneeeas 57

F AN OO PR TP UPPPUPPPURIN 58

3 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Y R 62
B et et eeeeeeetteeeeeseettaaieeeeeetttaaeeeeeettataeeeeeettaaaeeettttaaeaeteettaaeaeerraaaaaeerrranns 63
B A L ... e e et eeeeeeeettaeeeeeeettaeeeeeeettataeeeetetttaaeaeteetanaaeaeteettaaaarerraaaaeerrranns 64
BALC ..ottt ettt — e eeieeeeeeeeeeeeeeetettttet—————————————————__aaeaeeeseeeeeeetererererrrrrrrrarara—————— 66
B ittt ettt ettt et t————————————eaeeeteeeteteeeeeeeeettettteetera——————————————___aaieeeteeeeteeeetererrerrrererrrarana, 67
BCAEQZ BOANEZ.... oottt et et e eee e ae s s e s st e e e e seaesesaaaaeeaseeeeseeesesssnranes 68
B T ettt ettt ettt eeaeeeeeeeeeeeeeaeeeeettetete————————————————————aaaseeeeeeeteteterrrrrrrrrrrrara—————— 70
1O L PRt 72
=T T UUUSPUSPRRP 74
T T P UPRURRRRRE 76
BC2EQZ BC2NEZ.... .o oottt et e eeeeae e s e s ae s bbb e e e saaesaeaaaaeaeseesereessesesnranes 78
B O 2 ...ttt ettt aeaeaeeeeeeeeeeeaeeeeettetete——————————————————_—aaeseeeeeeetetetererrrrrrrrrrrra—————— 80
T @72 U PPRURRRRRE 81
1722 I UUUOPUSP PP 83
T2 1 PPt 84
7= U RPRURPPRRE 86
BE QL ...eeeiteiet ettt ettt eeeeeeeeeeeeeeeeeeeettet et —————————————————__aaeieeeseeeeeeetetererrrrrrrrrrara———————— 87
BGIEZ.....eeeeeeeeee et e e e e e e e e e e e e e e e e ee e ettt et ———————————————————aeaeeeeeeeaeeetetetertrrrrrr———————————— 89
BGIEZAL ...t e e e e e e e e e e e e e e e e e e ee ettt ettt ——————————————————————aiaieteeeaeaeeetererrerererrrrrar——. 90
B{LE,GE,GT,LT,EQ,NEJZALC ...ttt ettt e e e e e e e e e e e e e e e e e aeeeeessaasanrsrenaeeeaaens 91
BGIEZALL ...t e e e e e e e e e e e e e e e e e e ettt et e ———————————————————————iaieteeeaeaeeeteterrerrrerrrrrara—. 94
[ReTe] T D PPt 96
BGIEZL. ...t e e e e e e e e e e e e e e e e e e ee ettt ettt ——————————————————————aaiaeeeeaeaeeetereerrrerrrerar——. 100
B G T Z ..ttt ettt aeeeeeeeeeeeeeaeeeeeteetet————————————————————_aaeeeeeeaeeeetetereeerrrrrrrr————————— 102
T C N 174 I SPPRURPN: 103
BITSWAPR DBITSWARP ..ottt et eeeeee s e s s s e s s bbb ansesesesaaaaeasessresesessrares 105
B Z ..o e e e e et e— i eeeeeeettaeeeeeteetaaeeeeeettataaeaeettttaaaaaeetataaaeaerretaaaaaerraes 107
BLEZL ..o e eee e ettt eeeeeeetaaeeeeeeettataaeeeeetetaaeeeeettataaaaaetretaaeeeeerrraaaaaarees 108
BT .ottt e et eeeeeeeetaeeeeeeeettaeeeeeeettataeeeeettataaeeetettataaaaaeetetaaeeererrraaaaaaarees 110
BT Z AL ..ottt et e eeeeeeetaeeeeeett—aaeeeetettateeeeettataeaeeettataaeaeeretaaeeeerrrraaaaaaarees 111
BLTZALL ..ottt ettt ettt e e et e et eeeeeeea—aeeeeeeettateeeeettataeeeeeetataaeaesrataaaeeeerrraaaaaarees 112
= I 14 PO PTPPPRRRRPPRINt 114
BN <. oo et eee ettt e eeeeeeeetaaaeeeeeettttaaeeeetettataeeaettttaaeeeeetataaeeetteraaeeeerrrraaaaaarees 116
BIN L ..ottt e et e e e e et eeteeeeeeettaeeeeeetttaneeeteetataaaeaeetttanaeaaertataaaaereetaaaeaerrren 117
BOVEC BNV C ..ottt ettt et e e eeeseaese s s bt s b seaeeaeaaeaeaaaaseseessrerssnrernres 119
BRI A .ot et e e e ettt eeeeeeeetaaeeeeeetttaaeeeeeettataaeeeettataaeeeteetataaaaestetanaaeeeerrraaaaaarees 121
O eToT oo 1N {121 SR 122
(07X 0 = 1 =R 126
(07X 0 1 =1 R 133
L0 = I o o | R 139
L0 = 1AV o | R 140
L 1O L 141
L0 1072 143
(O N TS TR {1 1 SR 144
L0 1 LR 146
L R 147
(0311 = oTeY g Te [TR0) SRR 148
(010] 153
CRC32B, CRC32H, CRC32W, CRESB2Dccceeieieeeeeeeeeeee et a e e e e e e e e e e e e e e e e et e e e s et eeeaeseeeaeeeens 155
CRC32CB, CRC32CH, CRC32CW, CRCB2CD......ciciieeeiiiiititciieieeeee e e e e e e e e e e ee e e eeeeeesaevaba e e e e s e neeeeeens 158
L1 1O 161
L 1072 164
The MIPS64® Instruction Set Reference Manual, Revision 6.06 4

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

(A I R o) SO PTPTET U O PRSP ORI PR 165

(O I I 11 SO TSRO O PR OO PR ORRPR 166
(AT I T OO O PR OSSP ORRPR 167
(O IS T ISP PR U RO PR OSSP PR PR 169
BV T S PU ettt ettt et et eh et et e e e h e et e e e e et e e e e e e e n e e s ae e e n e e e e n e e 170
(AT IS {10 TP EUR PP RO RO PR ORI 171
(AT LT {1 SO R O PR OSSP PR PR 172
DADD . e e e e b e b e e 173
DADDI ... e b e b b 174
DADDIU bbb a s s a e e 175
DADDU bbb e b 176
DICLO ettt b e e e e et Re e h e e e b e e e et e n e e nn e e reenneeaneeas 177
DLz .o et h e e e E e e e e e n e s n e e nae e ne e e s 178
DT OO 179
DT OO 180
DE R E T e a e s s 181
D] G OO 182
DE XTIV e e b e s a e 184
DEXTU e bbb e b e e 186
D e a e e 188
DN S et e bt e e e e s e e ae e et e e eh e e et e bt e nn e e e sneenreeas 189
DINSIM ...ttt ettt e e e bt e e ettt e b et e e e R e e e R e e b et e R e e e et e h e sn e reenaneenreeas 191
DINSU .ttt h e h e e et ettt b e et a e e e e R e b e e b e e e et e bt e nn e e e e naneennee s 193
DIV e e e e e e 195
DIV MOD DIVU MODU DDIV DMOD DDIVU DMODUcoociiiiiiiiieie e 197
DAY 1 SO U RO PR ORI PR ORTOPRPPI 200
DIV U e b e e 201
DIMIFCO0 ...ttt b e h e e et e e b oo e R e e e R e a et e h e et e h e sn e aeesaeeeeneeas 202
DIMIFC T ettt h e bbbt e e e R e h e e b e e n e e a e sn e e e naneearee s 203
DIMIFC2 ..ttt h e b et e bt e st R e e R e e a e e h e e et e h e nn e e e neeenneeas 204
DIMITCO0 ..ttt ettt et h e e bt e e et et e st et oo s ae e e e e e e ae e e R e e e a e e e e R e e e e e e bt e nn e reenaneeereeas 205
DIMIT T ettt et h e h e e et ettt e b et e e e e e e R e ea e e e h e e et e h e e sn e heenaneenreeas 206
DIMITC 2 .. ettt et h e h oo a e et s et e bt e ae e R e e e e Rt h e e e h e e e e a e nn e e reenaneeaneeas 207
DIMULT e bbb b e e s e e s s e e s b e e s s e e e s a b e e s s b e e s s b e e s s b e e e be e 208
DIMULTU L bbb e e s e e s b e s e e e e e s s ab e e s s b e e s b e e s b ae e abe e 209
DROTR. ..t ettt et e bt e h e e a e e sa et e bt e st e n e e R e e R e h e e e h e e e et e h e e sn e e naeeenneeas 210
DROTRB2....c ettt ettt e bt e bt e e a e et s et e e b oo s et e e e e e s he e e ne e e h et e b e e e e e e bt e nn e e reesneenreeas 211
DROTRY ettt h e bt e e et et s et et e st e e e e e h e e e ne e h et e b e e e et e h e e s aeesaneeaneeas 212
D] =] ISP U RO PR ORI PR ORTOPRTPI 213
DISHDD ... et E e e e R e e e e h e e b e e ae e et e h e e sn e e e nneenneeas 214
D] TP U PO OPRR PSPPI 215
DS IR 72 TSRO PP PR UR PR OUROPRPPI 216
DSV et e e e et e e ae e b e e n e e e et e h e e nn e e e naneeareeas 217
DO R A et E et e R e e a e e eR e E e e e e e s et e a e e sn e e e saneenree s 218
DS RAB ...t e e et e e e b e e e r e nn e e a e e nn e e e e nneenreeas 219
DS RAV ettt e R e h e e s e e et e r e e e reenneenneeas 220
D] o | TSRO PO OURR PSPPI 221
D] o I TSP U S PRT ORI OPRORROPRTPI 222
DISRLY e e e R e e R e e e et e h e nn e reenaneenreeas 223
D] U = RSOOSR U RSP R ORI OPROUTOPRTPI 224
D] 0 =] O OO URT U OPR PR OPRRPI 225
D PO 226
EH B e e s 229

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

[O TSRO TR TR PRT ORI PR ORROPRTP 320
IMADID ... bbb e s a e s aa e 321
IMADID . FMIL . .ottt ettt e e e h e e e e e e e R e E e nae e n e e ae e e e e 322
MADDF.fMt MSUBF.FML ...t e e s e n e 324
IMADDU ..o bbb e s a e s aa e 326
MAX.fmt MIN.fmt MAXA.fME MINA M. .. 327
Y TSSO OO PP U RO PR 331
Y] O OSSP PR TR ORR PR 332
Y 72 OO SO OEO PR PP URTPRR PR 333
IMIFHCO ettt ettt et e e e a et e st e e s e e s e e s e e e bt e see e et e e s e e n e e s e n e 334
M H G e ettt e h et h e e E e e e h e et h e r e e e e n e e e n e 336
MIFHC 2 ettt ettt e a e e n e e e e h e et e bt s et e e e e r e ean e n e 337
1 o OO 338
IMIFLO ettt e e E et h e R e Rt e h e e e h e e sae e et e e e e e n e e enn e eneeaanas 339
MOV M <ottt s a e et e e a e e b e e e h e et e e s ae e et e e s e e r e e e n e 340
IOV ettt h e et h e et e e b e e et e e a e et e e h e e b e e ae et e e e e r e e r e nanas 341
MOV ML et sttt et e r e st e b e s e e s ae e et e e s e e e b e e smneeneesanas 342
IMIOVN ettt e h e et e e h et et e e b et e e oo e s e e et e e e a e e e b e e s e e e s e e e e e e n e sne e e n e 344
IMOVNLFME. .ttt e e e e e e s a e s b e e s ae e et e e s e e e b e e smneeneesanas 345
YL OO TSP ST PR SR PSTPPR 346
MOV T M ettt et h e et e r e st e b e s b e e s ae e et e e s e e e b e e smneeneeaanas 347
MOV Z .ottt ettt e e b e e et e a e e b e e e h e e b e s et r e e e n e sane e r e nanas 349
MOV ZIME ettt sttt h e et e e r e s et e b e s b e e e ae e et e e s e e e n e s e e e n e 350
IMISUB ..ottt e et h e et e e e h et oo h e e et e Rt e a et h e s e n e e e e r e e e e r e 351
IMISUBLIME <.ttt ettt e e e et e s b e s b e e s ae e et e e s e e s e n e 352
IMISUBU ..ottt h et h ettt e e b e e et e R e et e e b e e n e eae e et e e ae e n e s e e n e 354
Y 1 TSR PR PP U RO PR 355
Y 1 OO P R PRSP U ST UTR PR 357
Y 172 OSSO PR PP PR U RO PR 358
IMITHCO ettt et e s et oo ea e et e e a e e e r e e s e e e eb e e s ae e et e e s e e et e e snneeneenanas 360
M T H G ettt et e et oo st e r e e e e h e et e bt e s e n e e e n e e n e 362
MTHC 2 ettt e et e e et et e e s e e b e e e ae e e b e e sae e e n e e s e e e n e e saneer e 363
0 OO 364
IITLO et ettt e e et e e h e e e R R e e e R oo e e h e ae e et e e e e e n e e s an e r e nanas 365
1 OO 366
MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU ..o 367
Y10) OO U TP PR RO PRTPP 370
111 PP 371
MULTU Lo s e s e e s s e s s b e e e s eba e s b e e e s saa e 372
N PP 374
NE G L IMIL. e ettt sttt st e e e b e e a e b e bt n e s e re e naneeeree s 375
NIMADD T ..ttt b e st e b e st e e e e e s s e e a e e e ae e e s a e e san e e bt e san e e aeesaneeereeas 376
NIMSUBLIML ..ttt sttt e st e e e e e a e e e s e e s b e e sme e e b e e san e e beesaneeeneeas 378
NN TSSO TR O U U R ORI PR ORTOPRPPI 380
N O R ettt h et h e et e e et e e e e R e h et e he e e et e n e s e e reenneenreeas 381
(O] TP ETUR O PR ORR PR ORRPR 382
(O] OO SPETUR PP OSSP ORI 383
PAUSE ..o h et a e a e a e r et et e e reenaneenree s 385
P P S ettt e e e e ae e a e e e R e e et e a e e e reenneenreeas 387
P LU P S ettt R e e e e h e e a e e e e et e h e e e e eenneenree s 388
P R e e e 389
P RE R E e e e 393

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

RDPGPR ... ettt h e h e h et e e h et a e e et e e e n e e e et e h e e nn e reenneeareeas
RECIP M <ttt sttt e st e e e e e e a e e e et h e e e e bt e sn e e e sneenree
RINT M ettt sttt e st e et e e s h e e a e e eh e e e b e e s e e e bt e san e e sbeesaneenneeas

SELEQZ SELNEZo ettt ettt h e e e et e s e et e e e e e e e e ne e
SELEQZ.fmt SELNEQZ.TML ... e
] OO U TP PRRO PSPPI

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1 AT TP PPPP PPN 477
1A PP T PP PPPPR PPN 478
1 AT TSRO PPPR PPN 481
1 AT TP ST PPPP PR 483
1 AT | =TSPTSRO TPPR PP 486
14T D O TP ST UPPP PPN 488
SY N C ettt R et oA e et o R e e e E e e oo R e e e e b e e e o R e e e e Re e e e b ee e e anbe e e nre e e anneeenes 489
) 1L T TP T PP PPPPPPRTON 494
) 5] Y OO PPPP PPN 497
I = T OO P PP 498
I = TP OP PP TP PP PPI 499
I = O ROP PP PP 500
LI =1 OO PP P PP 501
LI 1 =1 1O TP TPPTPPPI 502
LI =1 O TP OP PP 503
LI = PP PO PPPRRPPPPPPRR 504
LI = A PSR P PP PPPRPPPPPPPRR 507
LI = PSP P PR OPPPPR 509
LI = PSP PU PR PPPPR 510
LI = 1 TP PP PPPRPPPPPPPRR 512
LI = 1 TP PO PO PPPUPPPPPPPRR 514
LI PP PP EPP P PPPRPPPPPPPRR 516
LI I P PO P PP PPPRPPPPPPPRR 517
LI I L PP PO PP PPPRPPPPPPPRRR 518
I L PP PP PU PR PPPPTN 519
LI ST RO PP EPP P PPPRPPPPPPPRRR 520
LI = PO PO PP RPP P PPPRPPPPPPPRR 521
TRUNC . L M. ettt s et e e bt e ettt e s b e e e oo he e e e amEe e e et e e e anb et e e ne e e eabneeenbeeenreas 522
TRUNC . WWLIME Lottt e bt e ek et e e eh e et e ehe e e e aab e e e s be e e anbe e e e sb e e enneeeanbeeennneas 523
LI PP P PP PU PR OPRPPR 524
WRPGIPR .ttt ettt b et ekt e e bt e b b e ek E e e AR e oo R e et e e AR et e e R et e e Ee e e e R e e e enn e e e anreeenreas 526
LTS] = PP OP PP 527

D (O] T OO PP PPPTOUUPPOPPRRPPION 528

D (O] TP U PP UPPTOPRPOTPRPRPPIO 529
Appendix A: Instruction Bit ENCOAINGS.......cccciiiiiiiiiniiiiiissnnnnnnnnnnnnennnmennenneene s nn s nnnnnens 531
A.1: Instruction Encodings and INStruCtioN ClaSSEScooiuiiiiiiiiiiiiiic et 531
A.2: Instruction Bit ENCOAING TabIES.........eeiiiie e 531
A.3: Floating Point Unit Instruction Format ENCOINGSuuiiiiiiiiiiiie e 543
A.4: Release 6 INStruCtioN ENCOTINGS.uuiiiiiiiii ittt e et e e et e e e s s nnneee s 544
Appendix B: ReViSion HiStOry ... s anns 549
9 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

10

List of Figures

Figure 2.1: Example of INStruction DESCHPLIONuiiiiiiiiiiie et e e e et e e e s e snbee e e e s ereeeeeeans 23
Figure 2.2: Example Of INSTrUCHON FIEIASeiii it e e e st e e e s e rsbee e e e s abaeeeeeans 24
Figure 2.3: Example of Instruction Descriptive Name and MNemMONICcc.ueiiiiiiiiiiee e e e 24
Figure 2.4: Example Of INSTrUCHION FOIMAL........ooiiiiiiiii it e e e e s bt e e e s ernbae e e e s anbaeeaeeaas 24
Figure 2.5: Example Of INSrUCHON PUIPOSEciiiiiiiiii ittt ettt e e s sttt e e e e snt e e e e s enbeeeeesansaeeaeean 25
Figure 2.6: Example of INStruction DESCHPLIONuiiiiiiiiiiie et e e e et e e e s e rnbee e e e s araeeeeeans 25
Figure 2.7: Example of INStruction RESIICHONSoiiiiiiiiiii e 26
Figure 2.8: Example of INStruction OPErationoeiiiiiiiie oottt e st e e e e st e e e s esnbeeeeessreeeaeeans 27
Figure 2.9: Example Of INSrUCtON EXCEPTIONcouviiiiiiiiiiie ettt ettt e e st e e e s ent e e e e s eenbaeeeesanbaeeaeean 27
Figure 2.10: Example of Instruction Programming NOTEScccuiiiiiiiiiiiiiiee e 28
Figure 2.11: COP_LW PSeudoCOde FUNCHONoiuiiiiiieiieie ettt e e 28
Figure 2.12: COP_LD PSeudocode FUNCHON.........citiiiiiiieiiete ettt 29
Figure 2.13: COP_SW PSeudoCOde FUNCHONoiuiiiiiiieiieee ittt ab e ne e anne e snne e e 29
Figure 2.14: COP_SD Pseudocode FUNCHONciuiiiiiiieiiiie ittt 29
Figure 2.15: CoprocessorOperation Pseudocode FUNCHONooiiiiiiiiiiiiiiiee et 30
Figure 2.16: MisalignedSupport PSeudocode FUNCLONcoiiiiiiiiiiiiiieiiiee e 30
Figure 2.17: AddressTranslation Pseudocode FUNCHONccuuiiiiiiiiiiic e 31
Figure 2.18: LoadMemory PSeudocode FUNCHONooiiiiiiiiiiiec et e e 31
Figure 2.19: StoreMemory PSeudoCOde FUNCHONeiiiiiiiiiiieiiie ettt 32
Figure 2.20: Prefetch PSeudoCode FUNCHON..........oiiuiii i 32
Figure 2.21: SyncOperation PSeudocode FUNCHONooiiuiiiiiiiiiiiie et 33
Figure 2.22: ValueFPR PSeUdOCOAE FUNCHON.........uiiiiiiiiiiiei ittt e e e e s e ee e 33
Figure 2.23: StoreFPR Pseudocode FUNCHONcuiiiiii e 34
Figure 2.24: CheckFPEXxception Pseudocode FUNCHONooiiiiiiiiiiiii et 35
Figure 2.25: FPConditionCode Pseudocode FUNCHON...........ciiiiiiiiiiieiiie et 35
Figure 2.26: SetFPConditionCode Pseudocode FUNCHONoiiiiiiiiiiieiiei e 36
Figure 2.27: sign_extend PSeUdOCOdE FUNCHIONSoociiiiiiiiiieee it e e e 36
Figure 2.28: memory_address PSeudocode FUNCLIONccoiiiiiiiiiiiiiee et e e 37
Figure 2.29: Instruction Fetch Implicit memory_address Wrappingcccoiuireeeeriieieeeiirieeee e e snneeeee s 38
Figure 2.30: AddressTranslation implicit memory_addresSs Wrapping.......ocueeeeeiiiimeeeiiiiieee e e e 38
Figure 2.31: SignalException PSeudocode FUNCHIONcciiiiiiiiiiiieiie e 38
Figure 2.32: SignalDebugBreakpointException Pseudocode FUNCHONcoocviiiiiiiiiiiieee e 38
Figure 2.33: SignalDebugModeBreakpointException Pseudocode FUNCHON...........cuviiieiiiiieeiiiie e 39
Figure 2.34: NullifyCurrentinstruction PseudoCode FUNCHONcoiiiiiiiiiiiii e 39
Figure 2.35: NotWordValue PSeudocode FUNCHON...........uiiiiiiiiiiici et 39
Figure 2.36: PolyMult PSEUAOCOAE FUNCHIONooviiiiiiiiiiiece et e e e e e 39
Figure 3.1: ALIGN 0peration (B2-Dit)........cceiiuiiiieiiiiiie ettt e e sttt e e s ettt e e e e e sntae e e e e esnbeeeeesanneneaeeans 53
Figure 3.2: DALIGN OPEration (B4-Dit)cicuiiieiiiiiiie ittt e e e e sttt e e s st e e e e e sntaeeeeeesnbeeeeesansaneaeeans 53
Figure 3.3: Example of an ALNV.PS OPEIationooii ittt et e et e e e s sbaeeeeessnnaeeeeeans 54
Figure 3.4: Usage of Address Fields to Select Index and Waycoociiiiiieiiiie i 127
Figure 3.5: Usage of Address Fields to Select Index and Waycoocuiiiiiiiiiie i 133
Figure 3.6: Operation of the DEXT INSTIUCHIONc..c.uiiiiiii i 182
Figure 3.7: Operation of the DEXTM INSTIUCTONcoiiiiiiiiiie ittt 184
Figure 3.8: Operation of the DEXTU INSIIUCTIONeiiiiiiiiiiie ettt ettt 186
Figure 3.9: Operation of the DINS INSIIUCHIONccoiuiiiiiii e 189
Figure 3.10: Operation of the DINSM INSTrUCTIONeiiiiiiiiiiiie et 191
Figure 3.11: Operation of the DINSU INSIIUCTIONeiiiiiiiiiiiie ittt 193
11 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Figure 3.12: Operation of the EXT INSIIUCTIONcciiiiiiiiii ettt e e 237

Figure 3.13: Operation of the INS INSTIUCHIONcocuiiiiiii e 246
Figure 3.14: Unaligned Doubleword Load Using LDL and LDR.........ccuviiiiiiiiiiieee e 273
Figure 3.15: Bytes Loaded DY LDL INSTIUCHIONc.uviiiiiiiiiii et 274
Figure 3.16: Unaligned Doubleword Load Using LDR and LDL..........c.cooiiiiiiiiiiiieic e 276
Figure 3.17: Bytes Loaded by LDR INSIIUCHIONoiiiiiiiiiiii et 277
Figure 5.1: Unaligned Word Load Using LWL and LWR.......coo it 303
Figure 5.2: Bytes Loaded DY LWL INSTFUCTIONocuuriiiiiiiii ettt 304
Figure 5.3: Bytes Loaded DY LWL INSTFUCTIONoo.uriiiiiiiie et 304
Figure 5.4: Unaligned Word Load Using LWLE and LWRE...........ooo e 307
Figure 5.5: Bytes Loaded by LWLE INSTFUCTIONeviiiiiiiiie et 308
Figure 5.6: Bytes Loaded by LWLE INSTFUCTIONoviiiiiiiiie et 308
Figure 5.7: Unaligned Word Load Using LWL and LWR.......coo e 311
Figure 5.8: Bytes Loaded by LWR INSTIUCTIONuviiiiiiiiiiee ettt 312
Figure 5.9: Bytes Loaded by LWR INSTIUCTIONc.uviiiiiiiiiiie ettt 312
Figure 5.10: Unaligned Word Load Using LWLE and LWRE..........coo e 315
Figure 5.11: Bytes Loaded by LWRE INSTUCTHIONoiiiiiiiii e 315
Figure 5.12: Bytes Loaded by LWRE INSTIUCTIONoiiiiiiiiieie et 316
Figure 6.13: Unaligned Doubleword Store With SDL and SDRccoiiuiiiiiiieiiiie e 439
Figure 6.14: Bytes Stored by an SDL INSTrUCTIONeiiiiiiiiee ettt e e s 440
Figure 6.15: Unaligned Doubleword Store With SDR @nd SDLccoiuiiiiiiieiiiee it 441
Figure 6.16: Bytes Stored by an SDR INSTIUCTIONcooiiiiiiiii e 442
Figure 6.17: Unaligned Word Store Using SWL and SWRooiiiiiiiiieiee e 478
Figure 6.18: Bytes Stored by an SWL INSTrUCHONcoiuiiiiiiiieiiceee e 479
Figure 6.19: Unaligned Word Store Using SWLE and SWREcoiiiiiiiiieiiee e 481
Figure 6.20: Bytes Stored by an SWLE INSTrUCTIONeiiiiiiieiiii ettt 482
Figure 6.21: Unaligned Word Store Using SWR @nd SWLoiiiiiiiiiii e 483
Figure 6.22: Bytes Stored by SWR INSTIUCTHIONccoiuiiiiiiii e 484
Figure 6.23: Unaligned Word Store Using SWRE and SWLEcooiiiiiiiie e 486
Figure 6.24: Bytes Stored by SWRE INSTIUCHONeiiiiiiiiiei e 487
Figure A.1: Sample Bit ENCOAING TaADIEc.uiiiiiiieiiiie ettt e e rnr e anne e 532
The MIPS64® Instruction Set Reference Manual, Revision 6.06 12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements.........ccoiieiiiiiiiiiii e 16
Table 1.2: Read/Write Register Field NOTAtIONooiiiiiii e 19
Table 2.1: AccessLength Specifications for LOAAS/STOreSeciiiiiiiiiiiiiie e 32
Table 3.1: FPU Comparisons Without Special Operand EXCEPHIONSc.uueiieiiiiiiiieiiiiieie et 123
Table 3.2: FPU Comparisons With Special Operand Exceptions for QNaNScccociiiiiieiieeee e, 124
Table 3.3: Usage Of EffECHVE AQUIrESS......c.uiiiiiiieitiie ettt e e sb e e sne e e s b e s anne e e 126
Table 3.4: Encoding of Bits[17:16] of CACHE INSrUCHONuiiiiiiiiiiee e 127
Table 3.5: Encoding of Bits [20:18] of the CACHE INSIrUCHONocuviiiiiiiiiiie e 128
Table 3.6: Usage Of EffECHVE AQUIrESS........uiiiiiiieiiie ettt e st e e sar e s b e e s anne e e 133
Table 3.7: Encoding of Bits[17:16] of CACHEE INSTrUCIONcciiiiiiiiiiiiiiee e 134
Table 3.8: Encoding of Bits [20:18] of the CACHEE INStruCHONcooiiiiiiiiiiiiee e 135
Table 3.1: Types of Global TLB INVAIAAIEScocueiiiiiieiieie et br e ean e 243
Table 5.1: Special Cases for FP MAX, MIN, MAXA, MINA a e e e e e e aeees 329
Table 6.2: Values of hint Field for PREF INSTUCONoocuiiiiiiii e 390
Table 6.3: Values of hint Field for PREFE INSTIUCHON...........oiiiiiiiiiiie et 394
Table 6.4: RDHWR Register NUMDETSoooiiiiiiiii ettt e e e e e e e e e e 400
Table 6.5: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field...........ccccooiiiiiiiiiiiiiiiiiiieeeee 491
Table A.1: Symbols Used in the Instruction ENcoding TabIescooiiiiiiiiiiiiii e 532
Table A.2: MIPS64 Encoding of the Opcode FIeldcceiiiiiiiiiieiiie e 534
Table A.3: MIPS64 SPECIAL Opcode Encoding of FUNCtion Fieldccooiiiiiiiiiiie e 535
Table A.4: MIPS64 REGIMM ENcoding Of rt FIEIAoiiiiiiiiie i 535
Table A.5: MIPS64 SPECIAL2 Encoding of FUNCHON Fieldcoiiiiiiiiiie e 536
Table A.6: MIPS64 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture............c.ccccoieenee 536
Table A.7: MIPS64 MOVCIBR ENCOiNG Of tf Bitcoiiiiiiiiiiieiie et 536
Table A.8: MIPS64 SRL Encoding of Shift/ROtatecoiiiiiiiii e 537
Table A.9: MIPS64 SRLV Encoding of Shift/ROtate...........ccueiiiiiiiii e 537
Table A.10: MIPS64 DSRLV Encoding of Shift/RoOtatecoouiiiiiiiiiii e 537
Table A.11: MIPS64 DSRL Encoding of Shift/ROtatec.cooiiiiiiiiiii e 537
Table A.12: MIPS64 DSRL32 Encoding of Shift/ROtatecueiiiiiiiiiii e 538
Table A.13: MIPS64 BSHFL and DBSHFL Encoding of sa Field..........c.cooiiiiiiiieeccceee e 538
Table A.14: MIPS64 COPO ENcoding Of IS FIldcoiiiiiiiiiieiiiee et 538
Table A.15: MIPS64 COPO Encoding of Function Field When rS=CO...........ccocviiiiiiieiiiie e 539
Table A.16: PCREL Encoding of Minor Opcode Fildocuiiiiiiiiiiiiieeiee e 539
Table A.17: MIPS64 ENCOAiNG Of I'S FI@IAccoiiiiiiiii it e e 539
Table A.18: MIPS64 COP1 Encoding of Function Field When rS=S.........ccociiiiiiiiiiii e 540
Table A.19: MIPS64 COP1 Encoding of Function Field When rS=Dccccciiiiiiiiiieiie e 540
Table A.20: MIPS64 COP1 Encoding of Function Field When rS=W OF Loceiiiiiiiiieec e 541
Table A.21: MIPS64 COP1 Encoding of Function Field When rS=PS ..o 541
Table A.22: MIPS64 COP1 Encoding of tf Bit When rs=S, D, or PS6R, Function=MOVCF6Rcccceeenn. 542
Table A.23: MIPS64 COP2 ENCOdiNg Of IS FIIAeiiiiiiiiiiieeie ettt 542
Table A.24: MIPS64 COP1X6R Encoding of FUNCHON Fieldc.cooiiiiiiiiiiicieee e 542
Table A.25: Floating Point Unit Instruction Format ENCOAINGS...........uvviiiiiiiieiiiiiiiee e 543
Table A.26: Release 6 MUL/DIV @NCOTINGSouuitiiiiiiiaitiie ettt ee sttt sbe e s e e sbeeesanneesneeesanneeenes 545
Table A.27: Release 6 PC-relative family @NCOAING........coouiiiiiiiiiiii e 545
Table A.28: Release 6 PC-relative family encoding bitStringscooiiiiiiiiiiiii e 546
Table A.29: B*C compact branch €NCOAINGScouiiiiiiiiiiiie ettt be e s nnn e 547
13 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 1

About This Book

The MIPS64® Instruction Set Reference Manual comes as part of a multi-volume set.

* Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS64® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the micro-
MIPS™ Architecture

* Volume II-A provides detailed descriptions of each instruction in the MIPS64® instruction set
* Volume II-B provides detailed descriptions of each instruction in the microMIPS64™ instruction set

* Volume III describes the MIPS64® and microMIPS64™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS64® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size. Release 6 removes
MIPS16e: MIPS16e cannot be implemented with Release 6.

* Volume I'V-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time. Release 6 removes MDMX: MDMX cannot be implemented with Release 6.

* Volume I'V-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture. Release 6
removes MIPS-3D: MIPS-3D cannot be implemented with Release 6.

* Volume I'V-d describes the SmartMIPS® Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture and is not applicable to the MIPS64® document set nor the microMIPS64™ docu-
ment set. Release 6 removes SmartMIPS: SmartMIPS cannot be implemented with Release 6, neither MIPS32
Release 6 nor MIPS64 Release 6.

* Volume I'V-e describes the MIPS® DSP Module to the MIPS® Architecture.

* Volume I'V-f describes the MIPS® MT Module to the MIPS® Architecture

* Volume I'V-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

* Volume I'V-i describes the MIPS® Virtualization Module to the MIPS® Architecture

* Volume I'V-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

The MIPS64® Instruction Set Reference Manual, Revision 6.06 16

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

About This Book

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

* is used for emphasis

» is used for bits, fields, and registers that are important from a software perspective (for instance, address bits
used by software, and programmable fields and registers), and various floating point instruction formats, such as
Sand D

» is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

» represents a term that is being defined

» isused for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

» isused for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers
5 through 1

» is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

17

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:
* UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

* Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described using a high-level language pseudocode resem-
bling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

“«— Assignment

= Tests for equality and inequality

I Bit string concatenation

xY A y-bit string formed by Yy copies of the single-bit value X

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
The MIPS64® Instruction Set Reference Manual, Revision 6.06 18

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
Xy 2 Selection of bits y through z of bit string X. Little-endian bit notation (rightmost bit is 0) is used. If'y is less
than z, this expression is an empty (zero length) bit string.
x.bit[y] Bity of bitstring X. Alternative to the traditional MIPS notation x,.
x.bits[y..z] Selection of bits y through z of bit string X. Alternative to the traditional MIPS notation x, .
x.byte[y] Byte y of bitstring X. Equivalent to the traditional MIPS notation Xgs«y+7_ gy
x.bytes[y..z] Selection of bytes y through z of bit string X. Alternative to the traditional MIPS notation Xgsy.7 g,
x.halfword[y] Similar extraction of particular bitfields (used in e.g., MSA packed SIMD vectors).
x.word][i]
x.doubleword][i]
x.bit31, x.byte0, etc. | Examples of abbreviated form of x.bit[y], etc. notation, when y is a constant.
x.fieldy Selection of a named subfield of bitstring X, typically a register or instruction encoding.
More formally described as “Field y of register x”.
For example, FIR.D = “the D bit of the Coprocessor 1 Floating-point Implementation Register (FIR)”.
+, - 2’s complement or floating point arithmetic: addition, subtraction
*, x 2’s complement or floating point multiplication (both used for either)
div 2’s complement integer division
mod 2’s complement modulo
/ Floating point division
< 2’s complement less-than comparison
> 2’s complement greater-than comparison
< 2’s complement less-than or equal comparison
2 2’s complement greater-than or equal comparison
nor Bitwise logical NOR
XOr Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[x] CPU general-purpose register X. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtl-gg, X].
SGPR[s.x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR([Ss,X] refers to GPR set S, register X.
FPR[X] Floating Point operand register X
FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
Release 6 removes the floating point condition codes.
FPR[X] Floating Point (Coprocessor unit 1), general register X

19

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

CPR[z,x,s]

Coprocessor unit z, general register X, select S

CP2CPR[x]

Coprocessor unit 2, general register X

CCR[z,X]

Coprocessor unit z, control register X

CP2CCR[x]

Coprocessor unit 2, control register X

coc[z]

Coprocessor unit Z condition signal

Xlat[x]

Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem

Endian mode as configured at chip reset (0 — Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions) and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU

The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRgg and User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

1+n:
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled 1+1.

The effect of pseudocode statements for the current instruction labeled 1+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC

The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. Release 6 adds PC-relative address computation and load instructions. The PC value contains a
full 64-bit address, all of which are significant during a memory reference.

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

20

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:
Encoding Meaning
0 The processor is executing 32-bit MIPS instructions
1 The processor is executing MIIPS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

HPABITS _ 536

ical address bits were implemented, the size of the physical address space would be bytes.

SEGBITS The number of virtual address bits implemented in a segment of the address space is represented by the sym-
bol SEGBITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segment is

ZSEGBITS — 240 bytes.

FP32RegistersMode | Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32 Release 1, the FPU
has 32, 32-bit FPRs, in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and
optionally in MIPS32 Release2 and Release 3) the FPU has 32 64-bit FPRs in which 64-bit data types are
stored in any FPR.

In MIPS32 Release 1 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the pro-
cessor operates as if it had 32, 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch

laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 Notation for Register Field Accessibility

In this document, the read/write properties of register fields use the notations shown in Table 1.1.
Table 1.2 Read/Write Register Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field are visible by
hardware read.

If the Reset State of this field is “Undefined”, either software or hardware must initialize the value before
the first read will return a predictable value. This should not be confused with the formal definition of
UNDEFINED behavior.

21 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.4 Notation for Register Field Accessibility

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation
R A field which is either static or is updated only by | A field to which the value written by software is
hardware. ignored by hardware. Software may write any value
If the Reset State of this field is either “0”, “Pre- | to this field without affecting hardware behavior.
set”, or “Externally Set”, hardware initializes this | Software reads of this field return the last value
field to zero or to the appropriate state, respectively, | updated by hardware.
on powerup. The term “Preset” is used to suggest | If the Reset State of this field is “Undefined”, soft-
that the processor establishes the appropriate state, | ware reads of this field result in an UNPREDICT-
whereas the term “Externally Set” is used to sug- | ABLE value except after a hardware update done
gest that the state is established via an external under the conditions specified in the description of
source (e.g., personality pins or initialization bit the field.
stream). These terms are suggestions only, and are
not intended to act as a requirement on the imple-
mentation.
If the Reset State of this field is “Undefined”, hard-
ware updates this field only under those conditions
specified in the description of the field.
RO RO = reserved, read as zero, ignore writes by soft- | Architectural Compatibility: RO fields are reserved,
ware. and may be used for not-yet-defined purposes in
future revisions of the architecture.
Hardware ignores software writes to an RO field.
Neither the occurrence of such writes, nor the val- | When writing an RO field, current software should
ues written, affects hardware behavior. only write either all Os, or, preferably, write back the
same value that was read from the field.
Hardware always returns 0 to software reads of RO
fields. Current software should not assume that the value
read from RO fields is zero, because this may not be
The Reset State of an RO field must always be 0. true on future hardware.
If software performs an mtc0 instruction which Future revisions of the architecture may redefine an
writes a non-zero value to an RO field, the write to | RO field, but must do so in such a way that software
the RO field will be ignored, but permitted writes to | which is unaware of the new definition and either
other fields in the register will not be affected. writes zeros or writes back the value it has read from
the field will continue to work correctly.
Writing back the same value that was read is guaran-
teed to have no unexpected effects on current or
future hardware behavior. (Except for non-atomicity
of such read-writes.)
Writing zeros to an RO field may not be preferred
because in the future this may interfere with the oper-
ation of other software which has been updated for
the new field definition.
The MIPS64® Instruction Set Reference Manual, Revision 6.06 22

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

About This Book

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation
0 Release 6
Release 6 legacy “0” behaves like RO - read as zero, nonzero writes ignored.
Legacy “0” should not be defined for any new control register fields; RO should be used instead.
HW returns 0 when read. Only zero should be written, or, value read from reg-
HW ignores writes. ister.
pre-Release 6
pre-Release 6 legacy “0” - read as zero, nonzero writes UNDEFINED
A field which hardware does not update, and for A field to which the value written by software must
which hardware can assume a zero value. be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero as
long as all previous software writes are zero.
If the Reset State of this field is “Undefined”, soft-
ware must write this field with zero before it is guar-
anteed to read as zero.
R/WO Like R/W, except that writes of non-zero to a R/WO field are ignored.

E.g. Status. NMI

Hardware may set or clear an R/WO bit. Software can only clear an R/WO0 bit.

Hardware ignores software writes of nonzero to an | Software writes 0 to an R/WO field to clear the field.
R/WO field. Neither the occurrence of such writes,
nor the values written, affects hardware behavior. | Software writes nonzero to an R/WO0 bit in order to
guarantee that the bit is not affected by the write.
Software writes of 0 to an R/WO0 field may have an
effect.

Hardware may return 0 or nonzero to software
reads of an R/WO bit.

If software performs an mtc0 instruction which
writes a non-zero value to an R/WO field, the write
to the R/WO field will be ignored, but permitted
writes to other fields in the register will not be
affected.

1.5 For More Information

MIPS processor manuals and additional information about MIPS products can be found at http://www.imgtec.com.

For comments or questions on the MIPS64® Architecture or this document, send Email to IMGBA-DocFeed-
back@imgtec.com.

23 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

http://www.mips.com/

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical

order in the tables at the beginning of the next chapter.
2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:
e “Instruction Fields” on page 26

e “Instruction Descriptive Name and Mnemonic” on page 26

* “Format Field” on page 26

e “Purpose Field” on page 27

e “Description Field” on page 27

* “Restrictions Field” on page 27

e “Operation Field” on page 29

e “Exceptions Field” on page 29

e “Programming Notes and Implementation Notes Fields” on page 29

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

24

Guide to the Instruction Set

Figure 2.1 Example of Instruction Description

Instruction Mnemonic and —s= Example Instruction Name EXAMPLE
Descriptive Name
EXAMPLE

31 26 25 21 20 16 15 1 10 6 5 0
Instruction Encoding
Constant and Variable —— SPECIAL 0 t rd 0 EXAMPLE
Field Names and Values 000000 00000 000000
Architecture Level at 6 > 5 ° 5 6
which Instruction Was
Defined/Redefined
Assembler Format(s) for ———— Format: EXAMPLE fd,rs,rt MIPS32
Each Definition

Short Description —————p Purpose: Example Instruction Name
To execute an EXAMPLE op.

Symbolic Description ——————» Description: GPR[rd] «— GPR[r]s exampleop GPR[rt]

Full Description of ———gm This section describes the operation of the instruction in text, tables, and illustrations. It
Instruction Operation includes information that would be difficult to encode in the Operation section.

Restrictions on Instruction ————® Restrictions:

and Operands
This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

High-Level Language — > Operation:
Description of the

Instruction Operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */

temp <— GPR[rs] exampleop GPR[rt]
GPR[rd] « sign_extend(temps;_ g)

Exceptions that the Instruction——~ Exceptions:

Can Cause
A list of exceptions taken by the instruction.

Notes for Programmers—® Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction.

Notes for Implementers—— Implementation Notes:

Like Programming Notes, except for processor implementors.

25 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.1 Understanding the Instruction Fields

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

* The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

* All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

» Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

31 26 25 21 20 16 15 1 10 6 5 0
SPECIAL 4 0 ADD
000000 s rt r 00000 100000
6 5 5 5 5 6

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

Format: ADD fd,rs,rt MIPS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields.

The architectural level at which the instruction was first defined, for example “MIPS32” is shown at the right side of
the page. Instructions introduced at different times by different ISA family members, are indicated by markings such

The MIPS64® Instruction Set Reference Manual, Revision 6.06 26

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

as “MIPS64, MIPS32 Release 2”. Instructions removed by particular architecture release are indicated in the Avail-
ability section.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

Description: GPR[rd] « GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

» Ifthe addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» Ifthe addition does not overflow, the 32-bit result is signed-extended and placed into
GPR rd.

27

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

* Valid values for instruction fields (for example, see floating point ADD.fmt)

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.1 Understanding the Instruction Fields

* ALIGNMENT requirements for memory addresses (for example, see LW)
* Valid values of operands (for example, see ALNV.PS)
* Valid operand formats (for example, see floating point ADD.fmt)

* Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

* Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits ¢3_31 equal),
then the result of the operation is UNPREDICTABLE.

2.1.7 Availability and Compatibility Fields

The Availability and Compatibility sections are not provided for all instructions. These sections list considerations
relevant to whether and how an implementation may implement some instructions, when software may use such
instructions, and how software can determine if an instruction or feature is present. Such considerations include:

* Some instructions are not present on all architecture releases. Sometimes the implementation is required to
signal a Reserved Instruction exception, but sometimes executing such an instruction encoding is architec-
turally defined to give UNPREDICTABLE results.

* Some instructions are available for implementations of a particular architecture release, but may be provided
only if an optional feature is implemented. Control register bits typically allow software to determine if the
feature is present.

+ Some instructions may not behave the same way on all implementations. Typically this involves behavior
that was UNPREDICTABLE in some implementations, but which is made architectural and guaranteed con-
sistent so that software can rely on it in subsequent architecture releases.

* Some instructions are prohibited for certain architecture releases and/or optional feature combinations.

* Some instructions may be removed for certain architecture releases. Implementations may then be required
to signal a Reserved Instruction exception for the removed instruction encoding; but sometimes the instruc-
tion encoding is reused for other instructions.

All of these considerations may apply to the same instruction. If such considerations applicable to an instruction are
simple, the architecture level in which an instruction was defined or redefined in the Format field, and/or the Restric-
tions section, may be sufficient; but if the set of such considerations applicable to an instruction is complicated, the
Availability and Compatibility sections may be provided.

The MIPS64® Instruction Set Reference Manual, Revision 6.06 28

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

2.1.8 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

Operation:

if NotWordValue (GPR[rs]) or NotWordvValue (GPR[rt]) then
UNPREDICTABLE
endif
temp <« (GPR[rsl;;||GPRI[rsls; o) + (GPRI[rtls,||GPRIrtls;)
if temp;, # temp;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« sign_extend(temps;)
endif

See 2.2 “Operation Section Notation and Functions” on page 30 for more information on the formal notation used
here.

2.1.9 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception
Exceptions:

Integer Overflow

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.
2.1.10 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

29 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

Figure 2.10 Example of Instruction Programming Notes
Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 30

* “Pseudocode Functions” on page 30

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

* “Coprocessor General Register Access Functions” on page 30
* “Memory Operation Functions” on page 32
* “Floating Point Functions” on page 35

* “Miscellaneous Functions” on page 44

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

2.2.2.1.1 COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register It.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)

The MIPS64® Instruction Set Reference Manual, Revision 6.06 30

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
2.2.2.1.2 COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function
COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.
/* Coprocessor-dependent action */
endfunction COP_LD

2.2.2.1.3 COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 2.13 COP_SW Pseudocode Function

dataword <« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word wvalue

/* Coprocessor-dependent action */
endfunction COP_SW
2.2.2.1.4 COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-

order doubleword in coprocessor general register rt.
Figure 2.14 COP_SD Pseudocode Function
datadouble <« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier

datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

31 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

endfunction COP_SD

2.2.2.1.5 CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop fun)

/* zZ: Coprocessor unit number */
/* cop fun: Coprocessor function from function field of instruction */

/* Transmit the cop fun value to coprocessor z */
endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the Access-
Length field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

2.2.2.2.1 Misalighed Support

MIPS processors originally required all memory accesses to be naturally aligned. MSA (the MIPS SIMD Architec-
ture) supported misaligned memory accesses for its 128 bit packed SIMD vector loads and stores, from its introduc-
tion in MIPS Release 5. Release 6 requires systems to provide support for misaligned memory accesses for all
ordinary memory reference instructions: the system must provide a mechanism to complete a misaligned memory ref-
erence for this instruction, ranging from full execution in hardware to trap-and-emulate.

The pseudocode function MisalignedSupport encapsulates the version number check to determine if misalignment is
supported for an ordinary memory access.

Figure 2.16 MisalignedSupport Pseudocode Function

predicate <« MisalignedSupport ()
return Config.AR > 2 // Architecture Revision 2 corresponds to MIPS Release 6.
end function

See Appendix B, “Misaligned Memory Accesses” on page 511 for a more detailed discussion of misalignment,
including pseudocode functions for the actual misaligned memory access.

2.2.2.2.2 AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

The MIPS64® Instruction Set Reference Manual, Revision 6.06 32

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

Given the virtual address vAddr, and whether the reference is to Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.17 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* TIorD: 1Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

2.2.2.2.3 LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.18 LoadMemory Pseudocode Function
MemElem <« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */

/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* VvAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

33 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

2.2.2.2.4 StoreMemory
The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will
actually be changed.

Figure 2.19 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem: Data in the width and alignment of a memory element. */

/* The width is the same size as the CPU general */

/* purpose register, either 4 or 8 bytes, */

/* aligned on a 4- or 8-byte boundary. For a */

/* partial-memory-element store, only the bytes that will bex*/
/* stored must be valid.x/

/* pAddr: physical address */

/* VvAddr: virtual address */

endfunction StoreMemory

2.2.2.2.5 Prefetch
The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.20 Prefetch Pseudocode Function
Prefetch (CCA, pAddr, vAddr, DATA, hint)
/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: 1Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
The MIPS64® Instruction Set Reference Manual, Revision 6.06 34

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
3
2

WORD 4 bytes (32 bits)
TRIPLEBYTE 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

2.2.2.2.6 SyncOperation
The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by Stype occur in the same order for all
processors.

Figure 2.21 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

2.2.2.3.1 ValueFPR
The ValueFPR function returns a formatted value from the floating point registers.
Figure 2.22 ValueFPR Pseudocode Function
value <« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */

/* OB, QH, */

/* UNINTERPRETED WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1l and SDC1 */

35 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

case fmt of
S, W, UNINTERPRETED WORD:
valueFPR < UNPREDICTABLE’? || FPR[fprls;

D, UNINTERPRETED DOUBLEWORD:

if (FP32RegistersMode = 0)
if (fpry # 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR <« FPR[fpr+ll;; , || FPRIfprls;. o
endif
else
valueFPR « FPR[fpr]
endif
L, OB, QH:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR « FPR[fpr]
endif
DEFAULT:

valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

2.2.2.3.2 StoreFPR

StoreFPR

/*
/*
/*
/*
/*
/*
/*

/*
/*

fpr:
fmt:

value:

Figure 2.23 StoreFPR Pseudocode Function

(fpr, fmt, value)

The FPR number */

The format of the data, one of: */

S, D, W, L, PS, */

OB, QH, */

UNINTERPRETED WORD, */

UNINTERPRETED DOUBLEWORD */

The formattted value to be stored into the FPR */

The UNINTERPRETED values are used to indicate that the datatype */
is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED WORD:
FPR [fpr] <« UNPREDICTABLE®? || value;;

D, UNINTERPRETED DOUBLEWORD:

The MIPS64® Instruction Set Reference Manual, Revision 6.06 36

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

if (FP32RegistersMode = 0)
if (fpry # 0) then
UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE>? | value,;.
FPR [fpr+1] < UNPREDICTABLE’? | valueg,
endif
else
FPR[fpr] <« value
endif

..32

L, OB, QH:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR[fpr] <« value
endif

endcase

endfunction StoreFPR

2.2.2.3.3 CheckFPException

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

Figure 2.24 CheckFPException Pseudocode Function

CheckFPException ()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */

/* and the corresponding bit in the Enable field are both 1 */

if ((FCSRyy = 1) or
((FCSRy¢. 15 and FCSRyq; 5) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

2.2.2.3.4 FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.

Figure 2.25 FPConditionCode Pseudocode Function
tf <-FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then
FPConditionCode <« FCSRj3

else
FPConditionCode < FCSRy4.cc

37 The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

endif
endfunction FPConditionCode
2.2.2.3.5 SetFPConditionCode
The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.26 SetFPConditionCode Pseudocode Function

SetFPConditionCode (cc, tf)
if cc = 0 then

FCSR « FCSR3; o4 || tf || FCSR,y o
else
FCSR < FCSR31 ss5icc || tf || FCSRa3icc. .o

endif

endfunction SetFPConditionCode

2.2.2.4 Pseudocode Functions Related to Sign and Zero Extension
2.2.2.4.1 Sign extension and zero extension in pseudocode

Much pseudocode uses a generic function sign extend without specifying from what bit position the extension is
done, when the intention is obvious. E.g. sign extend (immediatel6) orsign extend (disp9).

However, sometimes it is necessary to specify the bit position. For example, sign _extend (temp;; o) orthe

more complicated (offset,) CPREEN-(16+2) || offset || 02

The explicit notation sign extend.nbits(val) orsign extend(val,nbits) is suggested as a simpli-
fication. They say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually appar-
ent by context, and is usually GPRLEN, 32 or 64 bits. The previous examples then become.
sign_extend(tempsq)
= sign extend.32 (temp)

and
(of fset,g) CFRUEN-(1642) 1| offget || 02
= sign extend.1l6 (offset)<<2

Note that sign_extend.N(value) extends from bit position N-1, if the bits are numbered 0..N-1 as is typical.

The explicit notations sign extend.nbits(val) or sign extend(val,nbits) is used as a simplifica-
tion. These notations say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually
apparent by context, and is usually GPRLEN, 32 or 64 bits.

Figure 2.27 sign_extend Pseudocode Functions
sign extend.nbits(val) = sign_extend(val,nbits) /* syntactic equivalents */

function sign extend(val,nbits)
return (valnbits_l)GPRLEN—nblts ||
end function

valnbits—l ..0

The earlier examples can be expressed as

The MIPS64® Instruction Set Reference Manual, Revision 6.06 38

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

39

(offsets) CFRUEN-(1642) || offget || 02
= sign extend.1l6 (offset) << 2)

and
sign extend(temp;; ¢)
= sign extend.32(temp)

Similarly for zero extension, although zero extension is less common than sign extension in the MIPS ISA.

Floating point may use notations such as zero_extend. fmt corresponding to the format of the FPU instruction.
E.g. zero_extend.S and zero_extend.D are equivalent to zero_extend.32 and zero_extend. 64.

Existing pseudocode may use any of these, or other, notations.

2.2.2.4.2 memory_address

The pseudocode function memory address performs mode-dependent address space wrapping for compatibility
between MIPS32 and MIPS64. 1t is applied to all memory references. It may be specified explicitly in some places,
particularly for new memory reference instructions, but it is also declared to apply implicitly to all memory refer-
ences as defined below. In addition, certain instructions that are used to calculate effective memory addresses but
which are not themselves memory accesses specify memory_address explicitly in their pseudocode.

Figure 2.28 memory_address Pseudocode Function
function memory address (ea)
if User mode and Status.UX = 0 then return sign extend.32(ea)
/* Preliminary proposal to wrap privileged mode addresses */
if Supervisormode and Status.SX = 0 then return sign extend.32(ea)
if Kernel mode and Status.KX = 0 then return sign extend.32(ea)
/* if Hardware Page Table Walking, then wrap in same way as Kernel/VZ Root */
return ea
end function

On a 32-bit CPU, memory address returns its 32-bit effective address argument unaffected.

On a 64-bit processor, memory address optionally truncates a 32-bit address by sign extension, It discards car-
ries that may have propagated from the lower 32-bits to the upper 32-bits that would cause minor differences between

MIPS32 and MIPS64 execution.It is used in certain modes' on a MIPS64 CPU where strict compatibility with

MIPS32 is required. This behavior was and continues to be described in a section of Volume III of the MIPS ARM?-
However, the behavior was not formally described in pseudocode functions prior to Release 6.

In addition to the use of memory address for all memory references (including load and store instructions, LL/
SC), Release 6 extends this behavior to control transfers (branch and call instructions), and to the PC-relative address
calculation instructions (ADDIUPC, AUIPC, ALUIPC). In newer instructions the function is explicit in the pseudo-
code.

Implicit address space wrapping for all instruction fetches is described by the following pseudocode fragment which
should be considered part of instruction fetch:

Ju—

Currently, if in User/Supervisor/Kernel mode and Status.UX/SX/KX=0.
E.g. see section named “Special Behavior for Data References in User Mode with Statusy;x=0”, in the MIPS(r)

Architecture Reference Manual Volume II1, the MIPS64(R) and microMIPS64(tm) Privileged Resource Archi-
tecture, e.g. in section 4.11 of revision 5.03, or section 4.9 of revision 1.00.

The MIPS64® Instruction Set Reference Manual, Revision 6.06

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

Figure 2.29 Instruction Fetch Implicit memory_address Wrapping
PC < memory address(PC)
(instruction data, length) < instruction fetch(PC)
/* decode and execute instruction */

Implicit address space wrapping for all data memory accesses is described by the following pseudocode, which is
inserted at the top of the AddressTranslation pseudocode function:

Figure 2.30 AddressTranslation implicit memory_address Wrapping
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)
vAddr < memory address (vAddr)

In addition to its use in instruction pseudocode,

2.2.2.5 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

2.2.2.5.1 SignalException
The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.31 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument : A exception-dependent argument, if any */

endfunction SignalException

2.2.2.5.2 SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.32 SignhalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException

2.2.2.5.3 SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

The MIPS64® Instruction Set Reference Manual, Revision 6.06 40

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

Figure 2.33 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException
2.2.2.5.4 NullifyCurrentinstruction
The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

Figure 2.34 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction
2.2.2.5.5 NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such a value has bits 63..32 equal to bit 31.

Figure 2.35 NotWordValue Pseudocode Function

result < NotWordValue (value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */
/* value: A 64-bit register value to be checked */
