|
@@ -1,74 +1,72 @@
|
|
|
-/* origin: FreeBSD /usr/src/lib/msun/src/e_log2f.c */
|
|
|
/*
|
|
|
- * ====================================================
|
|
|
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
+ * Single-precision log2 function.
|
|
|
*
|
|
|
- * Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
- * Permission to use, copy, modify, and distribute this
|
|
|
- * software is freely granted, provided that this notice
|
|
|
- * is preserved.
|
|
|
- * ====================================================
|
|
|
- */
|
|
|
-/*
|
|
|
- * See comments in log2.c.
|
|
|
+ * Copyright (c) 2017-2018, Arm Limited.
|
|
|
+ * SPDX-License-Identifier: MIT
|
|
|
*/
|
|
|
|
|
|
#include <math.h>
|
|
|
#include <stdint.h>
|
|
|
+#include "libm.h"
|
|
|
+#include "log2f_data.h"
|
|
|
+
|
|
|
+/*
|
|
|
+LOG2F_TABLE_BITS = 4
|
|
|
+LOG2F_POLY_ORDER = 4
|
|
|
+
|
|
|
+ULP error: 0.752 (nearest rounding.)
|
|
|
+Relative error: 1.9 * 2^-26 (before rounding.)
|
|
|
+*/
|
|
|
|
|
|
-static const float
|
|
|
-ivln2hi = 1.4428710938e+00, /* 0x3fb8b000 */
|
|
|
-ivln2lo = -1.7605285393e-04, /* 0xb9389ad4 */
|
|
|
-/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
|
|
|
-Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
|
|
|
-Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
|
|
|
-Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
|
|
|
-Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
|
|
|
+#define N (1 << LOG2F_TABLE_BITS)
|
|
|
+#define T __log2f_data.tab
|
|
|
+#define A __log2f_data.poly
|
|
|
+#define OFF 0x3f330000
|
|
|
|
|
|
float log2f(float x)
|
|
|
{
|
|
|
- union {float f; uint32_t i;} u = {x};
|
|
|
- float_t hfsq,f,s,z,R,w,t1,t2,hi,lo;
|
|
|
- uint32_t ix;
|
|
|
- int k;
|
|
|
+ double_t z, r, r2, p, y, y0, invc, logc;
|
|
|
+ uint32_t ix, iz, top, tmp;
|
|
|
+ int k, i;
|
|
|
|
|
|
- ix = u.i;
|
|
|
- k = 0;
|
|
|
- if (ix < 0x00800000 || ix>>31) { /* x < 2**-126 */
|
|
|
- if (ix<<1 == 0)
|
|
|
- return -1/(x*x); /* log(+-0)=-inf */
|
|
|
- if (ix>>31)
|
|
|
- return (x-x)/0.0f; /* log(-#) = NaN */
|
|
|
- /* subnormal number, scale up x */
|
|
|
- k -= 25;
|
|
|
- x *= 0x1p25f;
|
|
|
- u.f = x;
|
|
|
- ix = u.i;
|
|
|
- } else if (ix >= 0x7f800000) {
|
|
|
- return x;
|
|
|
- } else if (ix == 0x3f800000)
|
|
|
+ ix = asuint(x);
|
|
|
+ /* Fix sign of zero with downward rounding when x==1. */
|
|
|
+ if (WANT_ROUNDING && predict_false(ix == 0x3f800000))
|
|
|
return 0;
|
|
|
+ if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
|
|
|
+ /* x < 0x1p-126 or inf or nan. */
|
|
|
+ if (ix * 2 == 0)
|
|
|
+ return __math_divzerof(1);
|
|
|
+ if (ix == 0x7f800000) /* log2(inf) == inf. */
|
|
|
+ return x;
|
|
|
+ if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
|
|
|
+ return __math_invalidf(x);
|
|
|
+ /* x is subnormal, normalize it. */
|
|
|
+ ix = asuint(x * 0x1p23f);
|
|
|
+ ix -= 23 << 23;
|
|
|
+ }
|
|
|
|
|
|
- /* reduce x into [sqrt(2)/2, sqrt(2)] */
|
|
|
- ix += 0x3f800000 - 0x3f3504f3;
|
|
|
- k += (int)(ix>>23) - 0x7f;
|
|
|
- ix = (ix&0x007fffff) + 0x3f3504f3;
|
|
|
- u.i = ix;
|
|
|
- x = u.f;
|
|
|
+ /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
|
|
|
+ The range is split into N subintervals.
|
|
|
+ The ith subinterval contains z and c is near its center. */
|
|
|
+ tmp = ix - OFF;
|
|
|
+ i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N;
|
|
|
+ top = tmp & 0xff800000;
|
|
|
+ iz = ix - top;
|
|
|
+ k = (int32_t)tmp >> 23; /* arithmetic shift */
|
|
|
+ invc = T[i].invc;
|
|
|
+ logc = T[i].logc;
|
|
|
+ z = (double_t)asfloat(iz);
|
|
|
|
|
|
- f = x - 1.0f;
|
|
|
- s = f/(2.0f + f);
|
|
|
- z = s*s;
|
|
|
- w = z*z;
|
|
|
- t1= w*(Lg2+w*Lg4);
|
|
|
- t2= z*(Lg1+w*Lg3);
|
|
|
- R = t2 + t1;
|
|
|
- hfsq = 0.5f*f*f;
|
|
|
+ /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
|
|
|
+ r = z * invc - 1;
|
|
|
+ y0 = logc + (double_t)k;
|
|
|
|
|
|
- hi = f - hfsq;
|
|
|
- u.f = hi;
|
|
|
- u.i &= 0xfffff000;
|
|
|
- hi = u.f;
|
|
|
- lo = f - hi - hfsq + s*(hfsq+R);
|
|
|
- return (lo+hi)*ivln2lo + lo*ivln2hi + hi*ivln2hi + k;
|
|
|
+ /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
|
|
|
+ r2 = r * r;
|
|
|
+ y = A[1] * r + A[2];
|
|
|
+ y = A[0] * r2 + y;
|
|
|
+ p = A[3] * r + y0;
|
|
|
+ y = y * r2 + p;
|
|
|
+ return eval_as_float(y);
|
|
|
}
|