|
@@ -1,88 +1,178 @@
|
|
|
#include "pthread_impl.h"
|
|
|
#include <semaphore.h>
|
|
|
#include <unistd.h>
|
|
|
+#include <dirent.h>
|
|
|
+#include <string.h>
|
|
|
+#include <ctype.h>
|
|
|
+#include "futex.h"
|
|
|
+#include "atomic.h"
|
|
|
+#include "../dirent/__dirent.h"
|
|
|
|
|
|
static struct chain {
|
|
|
struct chain *next;
|
|
|
- sem_t sem, sem2;
|
|
|
-} *head, *cur;
|
|
|
+ int tid;
|
|
|
+ sem_t target_sem, caller_sem;
|
|
|
+} *volatile head;
|
|
|
|
|
|
+static int synccall_lock[2];
|
|
|
+static int target_tid;
|
|
|
static void (*callback)(void *), *context;
|
|
|
-static int chainlen;
|
|
|
-static sem_t chainlock, chaindone;
|
|
|
+static volatile int dummy = 0;
|
|
|
+weak_alias(dummy, __block_new_threads);
|
|
|
|
|
|
-static void handler(int sig, siginfo_t *si, void *ctx)
|
|
|
+static void handler(int sig)
|
|
|
{
|
|
|
struct chain ch;
|
|
|
int old_errno = errno;
|
|
|
|
|
|
- if (chainlen == libc.threads_minus_1) return;
|
|
|
+ sem_init(&ch.target_sem, 0, 0);
|
|
|
+ sem_init(&ch.caller_sem, 0, 0);
|
|
|
|
|
|
- sigqueue(getpid(), SIGSYNCCALL, (union sigval){0});
|
|
|
+ ch.tid = __syscall(SYS_gettid);
|
|
|
|
|
|
- sem_init(&ch.sem, 0, 0);
|
|
|
- sem_init(&ch.sem2, 0, 0);
|
|
|
+ do ch.next = head;
|
|
|
+ while (a_cas_p(&head, ch.next, &ch) != ch.next);
|
|
|
|
|
|
- while (sem_wait(&chainlock));
|
|
|
- ch.next = head;
|
|
|
- head = &ch;
|
|
|
- if (++chainlen == libc.threads_minus_1) sem_post(&chaindone);
|
|
|
- sem_post(&chainlock);
|
|
|
+ if (a_cas(&target_tid, ch.tid, 0) == (ch.tid | 0x80000000))
|
|
|
+ __syscall(SYS_futex, &target_tid, FUTEX_UNLOCK_PI|FUTEX_PRIVATE);
|
|
|
|
|
|
- while (sem_wait(&ch.sem));
|
|
|
+ sem_wait(&ch.target_sem);
|
|
|
callback(context);
|
|
|
- sem_post(&ch.sem2);
|
|
|
- while (sem_wait(&ch.sem));
|
|
|
+ sem_post(&ch.caller_sem);
|
|
|
+ sem_wait(&ch.target_sem);
|
|
|
|
|
|
errno = old_errno;
|
|
|
}
|
|
|
|
|
|
void __synccall(void (*func)(void *), void *ctx)
|
|
|
{
|
|
|
- struct sigaction sa;
|
|
|
- struct chain *next;
|
|
|
sigset_t oldmask;
|
|
|
+ int cs, i, r, pid, self;;
|
|
|
+ DIR dir = {0};
|
|
|
+ struct dirent *de;
|
|
|
+ struct sigaction sa = { .sa_flags = 0, .sa_handler = handler };
|
|
|
+ struct chain *cp, *next;
|
|
|
+ struct timespec ts;
|
|
|
+
|
|
|
+ /* Blocking signals in two steps, first only app-level signals
|
|
|
+ * before taking the lock, then all signals after taking the lock,
|
|
|
+ * is necessary to achieve AS-safety. Blocking them all first would
|
|
|
+ * deadlock if multiple threads called __synccall. Waiting to block
|
|
|
+ * any until after the lock would allow re-entry in the same thread
|
|
|
+ * with the lock already held. */
|
|
|
+ __block_app_sigs(&oldmask);
|
|
|
+ LOCK(synccall_lock);
|
|
|
+ __block_all_sigs(0);
|
|
|
+ pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cs);
|
|
|
|
|
|
- if (!libc.threads_minus_1) {
|
|
|
- func(ctx);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- __inhibit_ptc();
|
|
|
+ head = 0;
|
|
|
|
|
|
- __block_all_sigs(&oldmask);
|
|
|
+ if (!libc.threaded) goto single_threaded;
|
|
|
|
|
|
- sem_init(&chaindone, 0, 0);
|
|
|
- sem_init(&chainlock, 0, 1);
|
|
|
- chainlen = 0;
|
|
|
- head = 0;
|
|
|
callback = func;
|
|
|
context = ctx;
|
|
|
|
|
|
- sa.sa_flags = SA_SIGINFO | SA_RESTART;
|
|
|
- sa.sa_sigaction = handler;
|
|
|
- sigfillset(&sa.sa_mask);
|
|
|
+ /* This atomic store ensures that any signaled threads will see the
|
|
|
+ * above stores, and prevents more than a bounded number of threads,
|
|
|
+ * those already in pthread_create, from creating new threads until
|
|
|
+ * the value is cleared to zero again. */
|
|
|
+ a_store(&__block_new_threads, 1);
|
|
|
+
|
|
|
+ /* Block even implementation-internal signals, so that nothing
|
|
|
+ * interrupts the SIGSYNCCALL handlers. The main possible source
|
|
|
+ * of trouble is asynchronous cancellation. */
|
|
|
+ memset(&sa.sa_mask, -1, sizeof sa.sa_mask);
|
|
|
__libc_sigaction(SIGSYNCCALL, &sa, 0);
|
|
|
|
|
|
- sigqueue(getpid(), SIGSYNCCALL, (union sigval){0});
|
|
|
- while (sem_wait(&chaindone));
|
|
|
+ pid = __syscall(SYS_getpid);
|
|
|
+ self = __syscall(SYS_gettid);
|
|
|
+
|
|
|
+ /* Since opendir is not AS-safe, the DIR needs to be setup manually
|
|
|
+ * in automatic storage. Thankfully this is easy. */
|
|
|
+ dir.fd = open("/proc/self/task", O_RDONLY|O_DIRECTORY|O_CLOEXEC);
|
|
|
+ if (dir.fd < 0) goto out;
|
|
|
+
|
|
|
+ /* Initially send one signal per counted thread. But since we can't
|
|
|
+ * synchronize with thread creation/exit here, there could be too
|
|
|
+ * few signals. This initial signaling is just an optimization, not
|
|
|
+ * part of the logic. */
|
|
|
+ for (i=libc.threads_minus_1; i; i--)
|
|
|
+ __syscall(SYS_kill, pid, SIGSYNCCALL);
|
|
|
+
|
|
|
+ /* Loop scanning the kernel-provided thread list until it shows no
|
|
|
+ * threads that have not already replied to the signal. */
|
|
|
+ for (;;) {
|
|
|
+ int miss_cnt = 0;
|
|
|
+ while ((de = readdir(&dir))) {
|
|
|
+ if (!isdigit(de->d_name[0])) continue;
|
|
|
+ int tid = atoi(de->d_name);
|
|
|
+ if (tid == self || !tid) continue;
|
|
|
+
|
|
|
+ /* Set the target thread as the PI futex owner before
|
|
|
+ * checking if it's in the list of caught threads. If it
|
|
|
+ * adds itself to the list after we check for it, then
|
|
|
+ * it will see its own tid in the PI futex and perform
|
|
|
+ * the unlock operation. */
|
|
|
+ a_store(&target_tid, tid);
|
|
|
+
|
|
|
+ /* Thread-already-caught is a success condition. */
|
|
|
+ for (cp = head; cp && cp->tid != tid; cp=cp->next);
|
|
|
+ if (cp) continue;
|
|
|
+
|
|
|
+ r = -__syscall(SYS_tgkill, pid, tid, SIGSYNCCALL);
|
|
|
+
|
|
|
+ /* Target thread exit is a success condition. */
|
|
|
+ if (r == ESRCH) continue;
|
|
|
+
|
|
|
+ /* The FUTEX_LOCK_PI operation is used to loan priority
|
|
|
+ * to the target thread, which otherwise may be unable
|
|
|
+ * to run. Timeout is necessary because there is a race
|
|
|
+ * condition where the tid may be reused by a different
|
|
|
+ * process. */
|
|
|
+ clock_gettime(CLOCK_REALTIME, &ts);
|
|
|
+ ts.tv_nsec += 10000000;
|
|
|
+ if (ts.tv_nsec >= 1000000000) {
|
|
|
+ ts.tv_sec++;
|
|
|
+ ts.tv_nsec -= 1000000000;
|
|
|
+ }
|
|
|
+ r = -__syscall(SYS_futex, &target_tid,
|
|
|
+ FUTEX_LOCK_PI|FUTEX_PRIVATE, 0, &ts);
|
|
|
+
|
|
|
+ /* Obtaining the lock means the thread responded. ESRCH
|
|
|
+ * means the target thread exited, which is okay too. */
|
|
|
+ if (!r || r == ESRCH) continue;
|
|
|
+
|
|
|
+ miss_cnt++;
|
|
|
+ }
|
|
|
+ if (!miss_cnt) break;
|
|
|
+ rewinddir(&dir);
|
|
|
+ }
|
|
|
+ close(dir.fd);
|
|
|
+
|
|
|
+ /* Serialize execution of callback in caught threads. */
|
|
|
+ for (cp=head; cp; cp=cp->next) {
|
|
|
+ sem_post(&cp->target_sem);
|
|
|
+ sem_wait(&cp->caller_sem);
|
|
|
+ }
|
|
|
|
|
|
- sa.sa_flags = 0;
|
|
|
sa.sa_handler = SIG_IGN;
|
|
|
__libc_sigaction(SIGSYNCCALL, &sa, 0);
|
|
|
|
|
|
- for (cur=head; cur; cur=cur->next) {
|
|
|
- sem_post(&cur->sem);
|
|
|
- while (sem_wait(&cur->sem2));
|
|
|
- }
|
|
|
+single_threaded:
|
|
|
func(ctx);
|
|
|
|
|
|
- for (cur=head; cur; cur=next) {
|
|
|
- next = cur->next;
|
|
|
- sem_post(&cur->sem);
|
|
|
+ /* Only release the caught threads once all threads, including the
|
|
|
+ * caller, have returned from the callback function. */
|
|
|
+ for (cp=head; cp; cp=next) {
|
|
|
+ next = cp->next;
|
|
|
+ sem_post(&cp->target_sem);
|
|
|
}
|
|
|
|
|
|
- __restore_sigs(&oldmask);
|
|
|
+out:
|
|
|
+ a_store(&__block_new_threads, 0);
|
|
|
+ __wake(&__block_new_threads, -1, 1);
|
|
|
|
|
|
- __release_ptc();
|
|
|
+ pthread_setcancelstate(cs, 0);
|
|
|
+ UNLOCK(synccall_lock);
|
|
|
+ __restore_sigs(&oldmask);
|
|
|
}
|