|
@@ -25,7 +25,7 @@
|
|
|
* the interval [0,0.34658]:
|
|
|
* Write
|
|
|
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
|
|
- * We use a special Remes algorithm on [0,0.34658] to generate
|
|
|
+ * We use a special Remez algorithm on [0,0.34658] to generate
|
|
|
* a polynomial of degree 5 to approximate R. The maximum error
|
|
|
* of this polynomial approximation is bounded by 2**-59. In
|
|
|
* other words,
|
|
@@ -36,15 +36,15 @@
|
|
|
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
|
|
* | |
|
|
|
* The computation of exp(r) thus becomes
|
|
|
- * 2*r
|
|
|
- * exp(r) = 1 + -------
|
|
|
- * R - r
|
|
|
- * r*R1(r)
|
|
|
+ * 2*r
|
|
|
+ * exp(r) = 1 + ----------
|
|
|
+ * R(r) - r
|
|
|
+ * r*c(r)
|
|
|
* = 1 + r + ----------- (for better accuracy)
|
|
|
- * 2 - R1(r)
|
|
|
+ * 2 - c(r)
|
|
|
* where
|
|
|
- * 2 4 10
|
|
|
- * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
|
|
+ * 2 4 10
|
|
|
+ * c(r) = r - (P1*r + P2*r + ... + P5*r ).
|
|
|
*
|
|
|
* 3. Scale back to obtain exp(x):
|
|
|
* From step 1, we have
|
|
@@ -61,27 +61,16 @@
|
|
|
*
|
|
|
* Misc. info.
|
|
|
* For IEEE double
|
|
|
- * if x > 7.09782712893383973096e+02 then exp(x) overflow
|
|
|
- * if x < -7.45133219101941108420e+02 then exp(x) underflow
|
|
|
- *
|
|
|
- * Constants:
|
|
|
- * The hexadecimal values are the intended ones for the following
|
|
|
- * constants. The decimal values may be used, provided that the
|
|
|
- * compiler will convert from decimal to binary accurately enough
|
|
|
- * to produce the hexadecimal values shown.
|
|
|
+ * if x > 709.782712893383973096 then exp(x) overflows
|
|
|
+ * if x < -745.133219101941108420 then exp(x) underflows
|
|
|
*/
|
|
|
|
|
|
#include "libm.h"
|
|
|
|
|
|
static const double
|
|
|
-halF[2] = {0.5,-0.5,},
|
|
|
-huge = 1.0e+300,
|
|
|
-o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
|
|
-u_threshold = -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
|
|
|
-ln2HI[2] = { 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
|
|
- -6.93147180369123816490e-01},/* 0xbfe62e42, 0xfee00000 */
|
|
|
-ln2LO[2] = { 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
|
|
- -1.90821492927058770002e-10},/* 0xbdea39ef, 0x35793c76 */
|
|
|
+half[2] = {0.5,-0.5},
|
|
|
+ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
|
|
+ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
|
|
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
|
|
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
|
|
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
|
@@ -89,68 +78,56 @@ P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
|
|
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
|
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|
|
|
|
|
-static const volatile double
|
|
|
-twom1000 = 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0 */
|
|
|
-
|
|
|
double exp(double x)
|
|
|
{
|
|
|
- double y,hi=0.0,lo=0.0,c,t,twopk;
|
|
|
- int32_t k=0,xsb;
|
|
|
+ double hi, lo, c, z;
|
|
|
+ int k, sign;
|
|
|
uint32_t hx;
|
|
|
|
|
|
GET_HIGH_WORD(hx, x);
|
|
|
- xsb = (hx>>31)&1; /* sign bit of x */
|
|
|
+ sign = hx>>31;
|
|
|
hx &= 0x7fffffff; /* high word of |x| */
|
|
|
|
|
|
- /* filter out non-finite argument */
|
|
|
- if (hx >= 0x40862E42) { /* if |x| >= 709.78... */
|
|
|
- if (hx >= 0x7ff00000) {
|
|
|
- uint32_t lx;
|
|
|
-
|
|
|
- GET_LOW_WORD(lx,x);
|
|
|
- if (((hx&0xfffff)|lx) != 0) /* NaN */
|
|
|
- return x+x;
|
|
|
- return xsb==0 ? x : 0.0; /* exp(+-inf)={inf,0} */
|
|
|
+ /* special cases */
|
|
|
+ if (hx >= 0x40862e42) { /* if |x| >= 709.78... */
|
|
|
+ if (isnan(x))
|
|
|
+ return x;
|
|
|
+ if (x > 709.782712893383973096) {
|
|
|
+ /* overflow if x!=inf */
|
|
|
+ STRICT_ASSIGN(double, x, 0x1p1023 * x);
|
|
|
+ return x;
|
|
|
+ }
|
|
|
+ if (x < -745.13321910194110842) {
|
|
|
+ /* underflow if x!=-inf */
|
|
|
+ STRICT_ASSIGN(double, x, 0x1p-1000 / -x * 0x1p-1000);
|
|
|
+ return x;
|
|
|
}
|
|
|
- if (x > o_threshold)
|
|
|
- return huge*huge; /* overflow */
|
|
|
- if (x < u_threshold)
|
|
|
- return twom1000*twom1000; /* underflow */
|
|
|
}
|
|
|
|
|
|
/* argument reduction */
|
|
|
- if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|
|
- if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
|
|
- hi = x-ln2HI[xsb];
|
|
|
- lo = ln2LO[xsb];
|
|
|
- k = 1 - xsb - xsb;
|
|
|
- } else {
|
|
|
- k = (int)(invln2*x+halF[xsb]);
|
|
|
- t = k;
|
|
|
- hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
|
|
- lo = t*ln2LO[0];
|
|
|
- }
|
|
|
+ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|
|
+ if (hx < 0x3ff0a2b2) /* if |x| < 1.5 ln2 */
|
|
|
+ k = 1 - sign - sign; /* optimization */
|
|
|
+ else
|
|
|
+ k = (int)(invln2*x + half[sign]);
|
|
|
+ hi = x - k*ln2hi; /* k*ln2hi is exact here */
|
|
|
+ lo = k*ln2lo;
|
|
|
STRICT_ASSIGN(double, x, hi - lo);
|
|
|
- } else if(hx < 0x3e300000) { /* |x| < 2**-28 */
|
|
|
- /* raise inexact */
|
|
|
- if (huge+x > 1.0)
|
|
|
- return 1.0+x;
|
|
|
- } else
|
|
|
+ } else if (hx > 0x3e300000) { /* if |x| > 2**-28 */
|
|
|
k = 0;
|
|
|
+ hi = x;
|
|
|
+ lo = 0;
|
|
|
+ } else {
|
|
|
+ /* inexact if x!=0 */
|
|
|
+ FORCE_EVAL(0x1p1023 + x);
|
|
|
+ return 1 + x;
|
|
|
+ }
|
|
|
|
|
|
/* x is now in primary range */
|
|
|
- t = x*x;
|
|
|
- if (k >= -1021)
|
|
|
- INSERT_WORDS(twopk, 0x3ff00000+(k<<20), 0);
|
|
|
- else
|
|
|
- INSERT_WORDS(twopk, 0x3ff00000+((k+1000)<<20), 0);
|
|
|
- c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
|
+ z = x*x;
|
|
|
+ c = x - z*(P1+z*(P2+z*(P3+z*(P4+z*P5))));
|
|
|
+ x = 1 + ((x*c/(2-c) - lo) + hi);
|
|
|
if (k == 0)
|
|
|
- return 1.0 - ((x*c)/(c-2.0) - x);
|
|
|
- y = 1.0-((lo-(x*c)/(2.0-c))-hi);
|
|
|
- if (k < -1021)
|
|
|
- return y*twopk*twom1000;
|
|
|
- if (k == 1024)
|
|
|
- return y*2.0*0x1p1023;
|
|
|
- return y*twopk;
|
|
|
+ return x;
|
|
|
+ return scalbn(x, k);
|
|
|
}
|