|
@@ -1,328 +1,343 @@
|
|
|
-/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
|
|
|
/*
|
|
|
- * ====================================================
|
|
|
- * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
|
|
+ * Double-precision x^y function.
|
|
|
*
|
|
|
- * Permission to use, copy, modify, and distribute this
|
|
|
- * software is freely granted, provided that this notice
|
|
|
- * is preserved.
|
|
|
- * ====================================================
|
|
|
- */
|
|
|
-/* pow(x,y) return x**y
|
|
|
- *
|
|
|
- * n
|
|
|
- * Method: Let x = 2 * (1+f)
|
|
|
- * 1. Compute and return log2(x) in two pieces:
|
|
|
- * log2(x) = w1 + w2,
|
|
|
- * where w1 has 53-24 = 29 bit trailing zeros.
|
|
|
- * 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
|
|
- * arithmetic, where |y'|<=0.5.
|
|
|
- * 3. Return x**y = 2**n*exp(y'*log2)
|
|
|
- *
|
|
|
- * Special cases:
|
|
|
- * 1. (anything) ** 0 is 1
|
|
|
- * 2. 1 ** (anything) is 1
|
|
|
- * 3. (anything except 1) ** NAN is NAN
|
|
|
- * 4. NAN ** (anything except 0) is NAN
|
|
|
- * 5. +-(|x| > 1) ** +INF is +INF
|
|
|
- * 6. +-(|x| > 1) ** -INF is +0
|
|
|
- * 7. +-(|x| < 1) ** +INF is +0
|
|
|
- * 8. +-(|x| < 1) ** -INF is +INF
|
|
|
- * 9. -1 ** +-INF is 1
|
|
|
- * 10. +0 ** (+anything except 0, NAN) is +0
|
|
|
- * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
|
|
- * 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero
|
|
|
- * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero
|
|
|
- * 14. -0 ** (+odd integer) is -0
|
|
|
- * 15. -0 ** (-odd integer) is -INF, raise divbyzero
|
|
|
- * 16. +INF ** (+anything except 0,NAN) is +INF
|
|
|
- * 17. +INF ** (-anything except 0,NAN) is +0
|
|
|
- * 18. -INF ** (+odd integer) is -INF
|
|
|
- * 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
|
|
|
- * 20. (anything) ** 1 is (anything)
|
|
|
- * 21. (anything) ** -1 is 1/(anything)
|
|
|
- * 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
|
|
- * 23. (-anything except 0 and inf) ** (non-integer) is NAN
|
|
|
- *
|
|
|
- * Accuracy:
|
|
|
- * pow(x,y) returns x**y nearly rounded. In particular
|
|
|
- * pow(integer,integer)
|
|
|
- * always returns the correct integer provided it is
|
|
|
- * representable.
|
|
|
- *
|
|
|
- * Constants :
|
|
|
- * The hexadecimal values are the intended ones for the following
|
|
|
- * constants. The decimal values may be used, provided that the
|
|
|
- * compiler will convert from decimal to binary accurately enough
|
|
|
- * to produce the hexadecimal values shown.
|
|
|
+ * Copyright (c) 2018, Arm Limited.
|
|
|
+ * SPDX-License-Identifier: MIT
|
|
|
*/
|
|
|
|
|
|
+#include <math.h>
|
|
|
+#include <stdint.h>
|
|
|
#include "libm.h"
|
|
|
+#include "exp_data.h"
|
|
|
+#include "pow_data.h"
|
|
|
|
|
|
-static const double
|
|
|
-bp[] = {1.0, 1.5,},
|
|
|
-dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
|
|
-dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
|
|
-two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
|
|
-huge = 1.0e300,
|
|
|
-tiny = 1.0e-300,
|
|
|
-/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
|
|
-L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
|
|
-L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
|
|
-L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
|
|
-L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
|
|
-L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
|
|
-L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
|
|
-P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
|
|
-P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
|
|
-P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
|
|
-P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
|
-P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
|
|
|
-lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
|
|
-lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
|
|
-lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
|
|
-ovt = 8.0085662595372944372e-017, /* -(1024-log2(ovfl+.5ulp)) */
|
|
|
-cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
|
|
-cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
|
|
-cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
|
|
|
-ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
|
|
-ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
|
|
-ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
|
|
+/*
|
|
|
+Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
|
|
|
+relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
|
|
|
+ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
|
|
|
+*/
|
|
|
|
|
|
-double pow(double x, double y)
|
|
|
+#define T __pow_log_data.tab
|
|
|
+#define A __pow_log_data.poly
|
|
|
+#define Ln2hi __pow_log_data.ln2hi
|
|
|
+#define Ln2lo __pow_log_data.ln2lo
|
|
|
+#define N (1 << POW_LOG_TABLE_BITS)
|
|
|
+#define OFF 0x3fe6955500000000
|
|
|
+
|
|
|
+/* Top 12 bits of a double (sign and exponent bits). */
|
|
|
+static inline uint32_t top12(double x)
|
|
|
{
|
|
|
- double z,ax,z_h,z_l,p_h,p_l;
|
|
|
- double y1,t1,t2,r,s,t,u,v,w;
|
|
|
- int32_t i,j,k,yisint,n;
|
|
|
- int32_t hx,hy,ix,iy;
|
|
|
- uint32_t lx,ly;
|
|
|
+ return asuint64(x) >> 52;
|
|
|
+}
|
|
|
|
|
|
- EXTRACT_WORDS(hx, lx, x);
|
|
|
- EXTRACT_WORDS(hy, ly, y);
|
|
|
- ix = hx & 0x7fffffff;
|
|
|
- iy = hy & 0x7fffffff;
|
|
|
+/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
|
|
|
+ additional 15 bits precision. IX is the bit representation of x, but
|
|
|
+ normalized in the subnormal range using the sign bit for the exponent. */
|
|
|
+static inline double_t log_inline(uint64_t ix, double_t *tail)
|
|
|
+{
|
|
|
+ /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
|
|
+ double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
|
|
|
+ uint64_t iz, tmp;
|
|
|
+ int k, i;
|
|
|
|
|
|
- /* x**0 = 1, even if x is NaN */
|
|
|
- if ((iy|ly) == 0)
|
|
|
- return 1.0;
|
|
|
- /* 1**y = 1, even if y is NaN */
|
|
|
- if (hx == 0x3ff00000 && lx == 0)
|
|
|
- return 1.0;
|
|
|
- /* NaN if either arg is NaN */
|
|
|
- if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0) ||
|
|
|
- iy > 0x7ff00000 || (iy == 0x7ff00000 && ly != 0))
|
|
|
- return x + y;
|
|
|
+ /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
|
|
|
+ The range is split into N subintervals.
|
|
|
+ The ith subinterval contains z and c is near its center. */
|
|
|
+ tmp = ix - OFF;
|
|
|
+ i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
|
|
|
+ k = (int64_t)tmp >> 52; /* arithmetic shift */
|
|
|
+ iz = ix - (tmp & 0xfffULL << 52);
|
|
|
+ z = asdouble(iz);
|
|
|
+ kd = (double_t)k;
|
|
|
|
|
|
- /* determine if y is an odd int when x < 0
|
|
|
- * yisint = 0 ... y is not an integer
|
|
|
- * yisint = 1 ... y is an odd int
|
|
|
- * yisint = 2 ... y is an even int
|
|
|
- */
|
|
|
- yisint = 0;
|
|
|
- if (hx < 0) {
|
|
|
- if (iy >= 0x43400000)
|
|
|
- yisint = 2; /* even integer y */
|
|
|
- else if (iy >= 0x3ff00000) {
|
|
|
- k = (iy>>20) - 0x3ff; /* exponent */
|
|
|
- if (k > 20) {
|
|
|
- uint32_t j = ly>>(52-k);
|
|
|
- if ((j<<(52-k)) == ly)
|
|
|
- yisint = 2 - (j&1);
|
|
|
- } else if (ly == 0) {
|
|
|
- uint32_t j = iy>>(20-k);
|
|
|
- if ((j<<(20-k)) == iy)
|
|
|
- yisint = 2 - (j&1);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
+ /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
|
|
|
+ invc = T[i].invc;
|
|
|
+ logc = T[i].logc;
|
|
|
+ logctail = T[i].logctail;
|
|
|
|
|
|
- /* special value of y */
|
|
|
- if (ly == 0) {
|
|
|
- if (iy == 0x7ff00000) { /* y is +-inf */
|
|
|
- if (((ix-0x3ff00000)|lx) == 0) /* (-1)**+-inf is 1 */
|
|
|
- return 1.0;
|
|
|
- else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
|
|
|
- return hy >= 0 ? y : 0.0;
|
|
|
- else /* (|x|<1)**+-inf = 0,inf */
|
|
|
- return hy >= 0 ? 0.0 : -y;
|
|
|
- }
|
|
|
- if (iy == 0x3ff00000) { /* y is +-1 */
|
|
|
- if (hy >= 0)
|
|
|
- return x;
|
|
|
- y = 1/x;
|
|
|
-#if FLT_EVAL_METHOD!=0
|
|
|
- {
|
|
|
- union {double f; uint64_t i;} u = {y};
|
|
|
- uint64_t i = u.i & -1ULL/2;
|
|
|
- if (i>>52 == 0 && (i&(i-1)))
|
|
|
- FORCE_EVAL((float)y);
|
|
|
- }
|
|
|
+ /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
|
|
|
+ |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
|
|
|
+#if __FP_FAST_FMA
|
|
|
+ r = __builtin_fma(z, invc, -1.0);
|
|
|
+#else
|
|
|
+ /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */
|
|
|
+ double_t zhi = asdouble((iz + (1ULL << 31)) & (-1ULL << 32));
|
|
|
+ double_t zlo = z - zhi;
|
|
|
+ double_t rhi = zhi * invc - 1.0;
|
|
|
+ double_t rlo = zlo * invc;
|
|
|
+ r = rhi + rlo;
|
|
|
#endif
|
|
|
- return y;
|
|
|
- }
|
|
|
- if (hy == 0x40000000) /* y is 2 */
|
|
|
- return x*x;
|
|
|
- if (hy == 0x3fe00000) { /* y is 0.5 */
|
|
|
- if (hx >= 0) /* x >= +0 */
|
|
|
- return sqrt(x);
|
|
|
- }
|
|
|
+
|
|
|
+ /* k*Ln2 + log(c) + r. */
|
|
|
+ t1 = kd * Ln2hi + logc;
|
|
|
+ t2 = t1 + r;
|
|
|
+ lo1 = kd * Ln2lo + logctail;
|
|
|
+ lo2 = t1 - t2 + r;
|
|
|
+
|
|
|
+ /* Evaluation is optimized assuming superscalar pipelined execution. */
|
|
|
+ double_t ar, ar2, ar3, lo3, lo4;
|
|
|
+ ar = A[0] * r; /* A[0] = -0.5. */
|
|
|
+ ar2 = r * ar;
|
|
|
+ ar3 = r * ar2;
|
|
|
+ /* k*Ln2 + log(c) + r + A[0]*r*r. */
|
|
|
+#if __FP_FAST_FMA
|
|
|
+ hi = t2 + ar2;
|
|
|
+ lo3 = __builtin_fma(ar, r, -ar2);
|
|
|
+ lo4 = t2 - hi + ar2;
|
|
|
+#else
|
|
|
+ double_t arhi = A[0] * rhi;
|
|
|
+ double_t arhi2 = rhi * arhi;
|
|
|
+ hi = t2 + arhi2;
|
|
|
+ lo3 = rlo * (ar + arhi);
|
|
|
+ lo4 = t2 - hi + arhi2;
|
|
|
+#endif
|
|
|
+ /* p = log1p(r) - r - A[0]*r*r. */
|
|
|
+ p = (ar3 * (A[1] + r * A[2] +
|
|
|
+ ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6]))));
|
|
|
+ lo = lo1 + lo2 + lo3 + lo4 + p;
|
|
|
+ y = hi + lo;
|
|
|
+ *tail = hi - y + lo;
|
|
|
+ return y;
|
|
|
+}
|
|
|
+
|
|
|
+#undef N
|
|
|
+#undef T
|
|
|
+#define N (1 << EXP_TABLE_BITS)
|
|
|
+#define InvLn2N __exp_data.invln2N
|
|
|
+#define NegLn2hiN __exp_data.negln2hiN
|
|
|
+#define NegLn2loN __exp_data.negln2loN
|
|
|
+#define Shift __exp_data.shift
|
|
|
+#define T __exp_data.tab
|
|
|
+#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
|
|
|
+#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
|
|
|
+#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
|
|
|
+#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
|
|
|
+#define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
|
|
|
+
|
|
|
+/* Handle cases that may overflow or underflow when computing the result that
|
|
|
+ is scale*(1+TMP) without intermediate rounding. The bit representation of
|
|
|
+ scale is in SBITS, however it has a computed exponent that may have
|
|
|
+ overflown into the sign bit so that needs to be adjusted before using it as
|
|
|
+ a double. (int32_t)KI is the k used in the argument reduction and exponent
|
|
|
+ adjustment of scale, positive k here means the result may overflow and
|
|
|
+ negative k means the result may underflow. */
|
|
|
+static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
|
|
|
+{
|
|
|
+ double_t scale, y;
|
|
|
+
|
|
|
+ if ((ki & 0x80000000) == 0) {
|
|
|
+ /* k > 0, the exponent of scale might have overflowed by <= 460. */
|
|
|
+ sbits -= 1009ull << 52;
|
|
|
+ scale = asdouble(sbits);
|
|
|
+ y = 0x1p1009 * (scale + scale * tmp);
|
|
|
+ return eval_as_double(y);
|
|
|
+ }
|
|
|
+ /* k < 0, need special care in the subnormal range. */
|
|
|
+ sbits += 1022ull << 52;
|
|
|
+ /* Note: sbits is signed scale. */
|
|
|
+ scale = asdouble(sbits);
|
|
|
+ y = scale + scale * tmp;
|
|
|
+ if (fabs(y) < 1.0) {
|
|
|
+ /* Round y to the right precision before scaling it into the subnormal
|
|
|
+ range to avoid double rounding that can cause 0.5+E/2 ulp error where
|
|
|
+ E is the worst-case ulp error outside the subnormal range. So this
|
|
|
+ is only useful if the goal is better than 1 ulp worst-case error. */
|
|
|
+ double_t hi, lo, one = 1.0;
|
|
|
+ if (y < 0.0)
|
|
|
+ one = -1.0;
|
|
|
+ lo = scale - y + scale * tmp;
|
|
|
+ hi = one + y;
|
|
|
+ lo = one - hi + y + lo;
|
|
|
+ y = eval_as_double(hi + lo) - one;
|
|
|
+ /* Fix the sign of 0. */
|
|
|
+ if (y == 0.0)
|
|
|
+ y = asdouble(sbits & 0x8000000000000000);
|
|
|
+ /* The underflow exception needs to be signaled explicitly. */
|
|
|
+ fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022);
|
|
|
}
|
|
|
+ y = 0x1p-1022 * y;
|
|
|
+ return eval_as_double(y);
|
|
|
+}
|
|
|
|
|
|
- ax = fabs(x);
|
|
|
- /* special value of x */
|
|
|
- if (lx == 0) {
|
|
|
- if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { /* x is +-0,+-inf,+-1 */
|
|
|
- z = ax;
|
|
|
- if (hy < 0) /* z = (1/|x|) */
|
|
|
- z = 1.0/z;
|
|
|
- if (hx < 0) {
|
|
|
- if (((ix-0x3ff00000)|yisint) == 0) {
|
|
|
- z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
|
|
- } else if (yisint == 1)
|
|
|
- z = -z; /* (x<0)**odd = -(|x|**odd) */
|
|
|
- }
|
|
|
- return z;
|
|
|
+#define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
|
|
|
+
|
|
|
+/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
|
|
|
+ The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */
|
|
|
+static inline double exp_inline(double_t x, double_t xtail, uint32_t sign_bias)
|
|
|
+{
|
|
|
+ uint32_t abstop;
|
|
|
+ uint64_t ki, idx, top, sbits;
|
|
|
+ /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
|
|
+ double_t kd, z, r, r2, scale, tail, tmp;
|
|
|
+
|
|
|
+ abstop = top12(x) & 0x7ff;
|
|
|
+ if (predict_false(abstop - top12(0x1p-54) >=
|
|
|
+ top12(512.0) - top12(0x1p-54))) {
|
|
|
+ if (abstop - top12(0x1p-54) >= 0x80000000) {
|
|
|
+ /* Avoid spurious underflow for tiny x. */
|
|
|
+ /* Note: 0 is common input. */
|
|
|
+ double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
|
|
|
+ return sign_bias ? -one : one;
|
|
|
+ }
|
|
|
+ if (abstop >= top12(1024.0)) {
|
|
|
+ /* Note: inf and nan are already handled. */
|
|
|
+ if (asuint64(x) >> 63)
|
|
|
+ return __math_uflow(sign_bias);
|
|
|
+ else
|
|
|
+ return __math_oflow(sign_bias);
|
|
|
}
|
|
|
+ /* Large x is special cased below. */
|
|
|
+ abstop = 0;
|
|
|
}
|
|
|
|
|
|
- s = 1.0; /* sign of result */
|
|
|
- if (hx < 0) {
|
|
|
- if (yisint == 0) /* (x<0)**(non-int) is NaN */
|
|
|
- return (x-x)/(x-x);
|
|
|
- if (yisint == 1) /* (x<0)**(odd int) */
|
|
|
- s = -1.0;
|
|
|
- }
|
|
|
+ /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
|
|
|
+ /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
|
|
|
+ z = InvLn2N * x;
|
|
|
+#if TOINT_INTRINSICS
|
|
|
+ kd = roundtoint(z);
|
|
|
+ ki = converttoint(z);
|
|
|
+#elif EXP_USE_TOINT_NARROW
|
|
|
+ /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */
|
|
|
+ kd = eval_as_double(z + Shift);
|
|
|
+ ki = asuint64(kd) >> 16;
|
|
|
+ kd = (double_t)(int32_t)ki;
|
|
|
+#else
|
|
|
+ /* z - kd is in [-1, 1] in non-nearest rounding modes. */
|
|
|
+ kd = eval_as_double(z + Shift);
|
|
|
+ ki = asuint64(kd);
|
|
|
+ kd -= Shift;
|
|
|
+#endif
|
|
|
+ r = x + kd * NegLn2hiN + kd * NegLn2loN;
|
|
|
+ /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
|
|
|
+ r += xtail;
|
|
|
+ /* 2^(k/N) ~= scale * (1 + tail). */
|
|
|
+ idx = 2 * (ki % N);
|
|
|
+ top = (ki + sign_bias) << (52 - EXP_TABLE_BITS);
|
|
|
+ tail = asdouble(T[idx]);
|
|
|
+ /* This is only a valid scale when -1023*N < k < 1024*N. */
|
|
|
+ sbits = T[idx + 1] + top;
|
|
|
+ /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
|
|
|
+ /* Evaluation is optimized assuming superscalar pipelined execution. */
|
|
|
+ r2 = r * r;
|
|
|
+ /* Without fma the worst case error is 0.25/N ulp larger. */
|
|
|
+ /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
|
|
|
+ tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
|
|
|
+ if (predict_false(abstop == 0))
|
|
|
+ return specialcase(tmp, sbits, ki);
|
|
|
+ scale = asdouble(sbits);
|
|
|
+ /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
|
|
|
+ is no spurious underflow here even without fma. */
|
|
|
+ return eval_as_double(scale + scale * tmp);
|
|
|
+}
|
|
|
|
|
|
- /* |y| is huge */
|
|
|
- if (iy > 0x41e00000) { /* if |y| > 2**31 */
|
|
|
- if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */
|
|
|
- if (ix <= 0x3fefffff)
|
|
|
- return hy < 0 ? huge*huge : tiny*tiny;
|
|
|
- if (ix >= 0x3ff00000)
|
|
|
- return hy > 0 ? huge*huge : tiny*tiny;
|
|
|
+/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
|
|
|
+ the bit representation of a non-zero finite floating-point value. */
|
|
|
+static inline int checkint(uint64_t iy)
|
|
|
+{
|
|
|
+ int e = iy >> 52 & 0x7ff;
|
|
|
+ if (e < 0x3ff)
|
|
|
+ return 0;
|
|
|
+ if (e > 0x3ff + 52)
|
|
|
+ return 2;
|
|
|
+ if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
|
|
|
+ return 0;
|
|
|
+ if (iy & (1ULL << (0x3ff + 52 - e)))
|
|
|
+ return 1;
|
|
|
+ return 2;
|
|
|
+}
|
|
|
+
|
|
|
+/* Returns 1 if input is the bit representation of 0, infinity or nan. */
|
|
|
+static inline int zeroinfnan(uint64_t i)
|
|
|
+{
|
|
|
+ return 2 * i - 1 >= 2 * asuint64(INFINITY) - 1;
|
|
|
+}
|
|
|
+
|
|
|
+double pow(double x, double y)
|
|
|
+{
|
|
|
+ uint32_t sign_bias = 0;
|
|
|
+ uint64_t ix, iy;
|
|
|
+ uint32_t topx, topy;
|
|
|
+
|
|
|
+ ix = asuint64(x);
|
|
|
+ iy = asuint64(y);
|
|
|
+ topx = top12(x);
|
|
|
+ topy = top12(y);
|
|
|
+ if (predict_false(topx - 0x001 >= 0x7ff - 0x001 ||
|
|
|
+ (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)) {
|
|
|
+ /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
|
|
|
+ and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
|
|
|
+ /* Special cases: (x < 0x1p-126 or inf or nan) or
|
|
|
+ (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
|
|
|
+ if (predict_false(zeroinfnan(iy))) {
|
|
|
+ if (2 * iy == 0)
|
|
|
+ return issignaling_inline(x) ? x + y : 1.0;
|
|
|
+ if (ix == asuint64(1.0))
|
|
|
+ return issignaling_inline(y) ? x + y : 1.0;
|
|
|
+ if (2 * ix > 2 * asuint64(INFINITY) ||
|
|
|
+ 2 * iy > 2 * asuint64(INFINITY))
|
|
|
+ return x + y;
|
|
|
+ if (2 * ix == 2 * asuint64(1.0))
|
|
|
+ return 1.0;
|
|
|
+ if ((2 * ix < 2 * asuint64(1.0)) == !(iy >> 63))
|
|
|
+ return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
|
|
|
+ return y * y;
|
|
|
}
|
|
|
- /* over/underflow if x is not close to one */
|
|
|
- if (ix < 0x3fefffff)
|
|
|
- return hy < 0 ? s*huge*huge : s*tiny*tiny;
|
|
|
- if (ix > 0x3ff00000)
|
|
|
- return hy > 0 ? s*huge*huge : s*tiny*tiny;
|
|
|
- /* now |1-x| is tiny <= 2**-20, suffice to compute
|
|
|
- log(x) by x-x^2/2+x^3/3-x^4/4 */
|
|
|
- t = ax - 1.0; /* t has 20 trailing zeros */
|
|
|
- w = (t*t)*(0.5 - t*(0.3333333333333333333333-t*0.25));
|
|
|
- u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
|
|
|
- v = t*ivln2_l - w*ivln2;
|
|
|
- t1 = u + v;
|
|
|
- SET_LOW_WORD(t1, 0);
|
|
|
- t2 = v - (t1-u);
|
|
|
- } else {
|
|
|
- double ss,s2,s_h,s_l,t_h,t_l;
|
|
|
- n = 0;
|
|
|
- /* take care subnormal number */
|
|
|
- if (ix < 0x00100000) {
|
|
|
- ax *= two53;
|
|
|
- n -= 53;
|
|
|
- GET_HIGH_WORD(ix,ax);
|
|
|
+ if (predict_false(zeroinfnan(ix))) {
|
|
|
+ double_t x2 = x * x;
|
|
|
+ if (ix >> 63 && checkint(iy) == 1)
|
|
|
+ x2 = -x2;
|
|
|
+ /* Without the barrier some versions of clang hoist the 1/x2 and
|
|
|
+ thus division by zero exception can be signaled spuriously. */
|
|
|
+ return iy >> 63 ? fp_barrier(1 / x2) : x2;
|
|
|
}
|
|
|
- n += ((ix)>>20) - 0x3ff;
|
|
|
- j = ix & 0x000fffff;
|
|
|
- /* determine interval */
|
|
|
- ix = j | 0x3ff00000; /* normalize ix */
|
|
|
- if (j <= 0x3988E) /* |x|<sqrt(3/2) */
|
|
|
- k = 0;
|
|
|
- else if (j < 0xBB67A) /* |x|<sqrt(3) */
|
|
|
- k = 1;
|
|
|
- else {
|
|
|
- k = 0;
|
|
|
- n += 1;
|
|
|
- ix -= 0x00100000;
|
|
|
+ /* Here x and y are non-zero finite. */
|
|
|
+ if (ix >> 63) {
|
|
|
+ /* Finite x < 0. */
|
|
|
+ int yint = checkint(iy);
|
|
|
+ if (yint == 0)
|
|
|
+ return __math_invalid(x);
|
|
|
+ if (yint == 1)
|
|
|
+ sign_bias = SIGN_BIAS;
|
|
|
+ ix &= 0x7fffffffffffffff;
|
|
|
+ topx &= 0x7ff;
|
|
|
+ }
|
|
|
+ if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be) {
|
|
|
+ /* Note: sign_bias == 0 here because y is not odd. */
|
|
|
+ if (ix == asuint64(1.0))
|
|
|
+ return 1.0;
|
|
|
+ if ((topy & 0x7ff) < 0x3be) {
|
|
|
+ /* |y| < 2^-65, x^y ~= 1 + y*log(x). */
|
|
|
+ if (WANT_ROUNDING)
|
|
|
+ return ix > asuint64(1.0) ? 1.0 + y :
|
|
|
+ 1.0 - y;
|
|
|
+ else
|
|
|
+ return 1.0;
|
|
|
+ }
|
|
|
+ return (ix > asuint64(1.0)) == (topy < 0x800) ?
|
|
|
+ __math_oflow(0) :
|
|
|
+ __math_uflow(0);
|
|
|
+ }
|
|
|
+ if (topx == 0) {
|
|
|
+ /* Normalize subnormal x so exponent becomes negative. */
|
|
|
+ ix = asuint64(x * 0x1p52);
|
|
|
+ ix &= 0x7fffffffffffffff;
|
|
|
+ ix -= 52ULL << 52;
|
|
|
}
|
|
|
- SET_HIGH_WORD(ax, ix);
|
|
|
-
|
|
|
- /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
|
- u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
|
- v = 1.0/(ax+bp[k]);
|
|
|
- ss = u*v;
|
|
|
- s_h = ss;
|
|
|
- SET_LOW_WORD(s_h, 0);
|
|
|
- /* t_h=ax+bp[k] High */
|
|
|
- t_h = 0.0;
|
|
|
- SET_HIGH_WORD(t_h, ((ix>>1)|0x20000000) + 0x00080000 + (k<<18));
|
|
|
- t_l = ax - (t_h-bp[k]);
|
|
|
- s_l = v*((u-s_h*t_h)-s_h*t_l);
|
|
|
- /* compute log(ax) */
|
|
|
- s2 = ss*ss;
|
|
|
- r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
|
|
- r += s_l*(s_h+ss);
|
|
|
- s2 = s_h*s_h;
|
|
|
- t_h = 3.0 + s2 + r;
|
|
|
- SET_LOW_WORD(t_h, 0);
|
|
|
- t_l = r - ((t_h-3.0)-s2);
|
|
|
- /* u+v = ss*(1+...) */
|
|
|
- u = s_h*t_h;
|
|
|
- v = s_l*t_h + t_l*ss;
|
|
|
- /* 2/(3log2)*(ss+...) */
|
|
|
- p_h = u + v;
|
|
|
- SET_LOW_WORD(p_h, 0);
|
|
|
- p_l = v - (p_h-u);
|
|
|
- z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
|
- z_l = cp_l*p_h+p_l*cp + dp_l[k];
|
|
|
- /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
|
- t = (double)n;
|
|
|
- t1 = ((z_h + z_l) + dp_h[k]) + t;
|
|
|
- SET_LOW_WORD(t1, 0);
|
|
|
- t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
|
|
}
|
|
|
|
|
|
- /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
|
|
- y1 = y;
|
|
|
- SET_LOW_WORD(y1, 0);
|
|
|
- p_l = (y-y1)*t1 + y*t2;
|
|
|
- p_h = y1*t1;
|
|
|
- z = p_l + p_h;
|
|
|
- EXTRACT_WORDS(j, i, z);
|
|
|
- if (j >= 0x40900000) { /* z >= 1024 */
|
|
|
- if (((j-0x40900000)|i) != 0) /* if z > 1024 */
|
|
|
- return s*huge*huge; /* overflow */
|
|
|
- if (p_l + ovt > z - p_h)
|
|
|
- return s*huge*huge; /* overflow */
|
|
|
- } else if ((j&0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */ // FIXME: instead of abs(j) use unsigned j
|
|
|
- if (((j-0xc090cc00)|i) != 0) /* z < -1075 */
|
|
|
- return s*tiny*tiny; /* underflow */
|
|
|
- if (p_l <= z - p_h)
|
|
|
- return s*tiny*tiny; /* underflow */
|
|
|
- }
|
|
|
- /*
|
|
|
- * compute 2**(p_h+p_l)
|
|
|
- */
|
|
|
- i = j & 0x7fffffff;
|
|
|
- k = (i>>20) - 0x3ff;
|
|
|
- n = 0;
|
|
|
- if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
|
|
- n = j + (0x00100000>>(k+1));
|
|
|
- k = ((n&0x7fffffff)>>20) - 0x3ff; /* new k for n */
|
|
|
- t = 0.0;
|
|
|
- SET_HIGH_WORD(t, n & ~(0x000fffff>>k));
|
|
|
- n = ((n&0x000fffff)|0x00100000)>>(20-k);
|
|
|
- if (j < 0)
|
|
|
- n = -n;
|
|
|
- p_h -= t;
|
|
|
- }
|
|
|
- t = p_l + p_h;
|
|
|
- SET_LOW_WORD(t, 0);
|
|
|
- u = t*lg2_h;
|
|
|
- v = (p_l-(t-p_h))*lg2 + t*lg2_l;
|
|
|
- z = u + v;
|
|
|
- w = v - (z-u);
|
|
|
- t = z*z;
|
|
|
- t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
|
- r = (z*t1)/(t1-2.0) - (w + z*w);
|
|
|
- z = 1.0 - (r-z);
|
|
|
- GET_HIGH_WORD(j, z);
|
|
|
- j += n<<20;
|
|
|
- if ((j>>20) <= 0) /* subnormal output */
|
|
|
- z = scalbn(z,n);
|
|
|
- else
|
|
|
- SET_HIGH_WORD(z, j);
|
|
|
- return s*z;
|
|
|
+ double_t lo;
|
|
|
+ double_t hi = log_inline(ix, &lo);
|
|
|
+ double_t ehi, elo;
|
|
|
+#if __FP_FAST_FMA
|
|
|
+ ehi = y * hi;
|
|
|
+ elo = y * lo + __builtin_fma(y, hi, -ehi);
|
|
|
+#else
|
|
|
+ double_t yhi = asdouble(iy & -1ULL << 27);
|
|
|
+ double_t ylo = y - yhi;
|
|
|
+ double_t lhi = asdouble(asuint64(hi) & -1ULL << 27);
|
|
|
+ double_t llo = hi - lhi + lo;
|
|
|
+ ehi = yhi * lhi;
|
|
|
+ elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25. */
|
|
|
+#endif
|
|
|
+ return exp_inline(ehi, elo, sign_bias);
|
|
|
}
|