j0f.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. /* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */
  2. /*
  3. * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
  4. */
  5. /*
  6. * ====================================================
  7. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  8. *
  9. * Developed at SunPro, a Sun Microsystems, Inc. business.
  10. * Permission to use, copy, modify, and distribute this
  11. * software is freely granted, provided that this notice
  12. * is preserved.
  13. * ====================================================
  14. */
  15. #include "libm.h"
  16. static float pzerof(float), qzerof(float);
  17. static const float
  18. huge = 1e30,
  19. invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
  20. tpi = 6.3661974669e-01, /* 0x3f22f983 */
  21. /* R0/S0 on [0, 2.00] */
  22. R02 = 1.5625000000e-02, /* 0x3c800000 */
  23. R03 = -1.8997929874e-04, /* 0xb947352e */
  24. R04 = 1.8295404516e-06, /* 0x35f58e88 */
  25. R05 = -4.6183270541e-09, /* 0xb19eaf3c */
  26. S01 = 1.5619102865e-02, /* 0x3c7fe744 */
  27. S02 = 1.1692678527e-04, /* 0x38f53697 */
  28. S03 = 5.1354652442e-07, /* 0x3509daa6 */
  29. S04 = 1.1661400734e-09; /* 0x30a045e8 */
  30. float j0f(float x)
  31. {
  32. float z, s,c,ss,cc,r,u,v;
  33. int32_t hx,ix;
  34. GET_FLOAT_WORD(hx, x);
  35. ix = hx & 0x7fffffff;
  36. if (ix >= 0x7f800000)
  37. return 1.0f/(x*x);
  38. x = fabsf(x);
  39. if (ix >= 0x40000000) { /* |x| >= 2.0 */
  40. s = sinf(x);
  41. c = cosf(x);
  42. ss = s-c;
  43. cc = s+c;
  44. if (ix < 0x7f000000) { /* make sure x+x does not overflow */
  45. z = -cosf(x+x);
  46. if (s*c < 0.0f)
  47. cc = z/ss;
  48. else
  49. ss = z/cc;
  50. }
  51. /*
  52. * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
  53. * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
  54. */
  55. if (ix > 0x80000000)
  56. z = (invsqrtpi*cc)/sqrtf(x);
  57. else {
  58. u = pzerof(x);
  59. v = qzerof(x);
  60. z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
  61. }
  62. return z;
  63. }
  64. if (ix < 0x39000000) { /* |x| < 2**-13 */
  65. /* raise inexact if x != 0 */
  66. if (huge+x > 1.0f) {
  67. if (ix < 0x32000000) /* |x| < 2**-27 */
  68. return 1.0f;
  69. return 1.0f - 0.25f*x*x;
  70. }
  71. }
  72. z = x*x;
  73. r = z*(R02+z*(R03+z*(R04+z*R05)));
  74. s = 1.0f+z*(S01+z*(S02+z*(S03+z*S04)));
  75. if(ix < 0x3F800000) { /* |x| < 1.00 */
  76. return 1.0f + z*(-0.25f + (r/s));
  77. } else {
  78. u = 0.5f*x;
  79. return (1.0f+u)*(1.0f-u) + z*(r/s);
  80. }
  81. }
  82. static const float
  83. u00 = -7.3804296553e-02, /* 0xbd9726b5 */
  84. u01 = 1.7666645348e-01, /* 0x3e34e80d */
  85. u02 = -1.3818567619e-02, /* 0xbc626746 */
  86. u03 = 3.4745343146e-04, /* 0x39b62a69 */
  87. u04 = -3.8140706238e-06, /* 0xb67ff53c */
  88. u05 = 1.9559013964e-08, /* 0x32a802ba */
  89. u06 = -3.9820518410e-11, /* 0xae2f21eb */
  90. v01 = 1.2730483897e-02, /* 0x3c509385 */
  91. v02 = 7.6006865129e-05, /* 0x389f65e0 */
  92. v03 = 2.5915085189e-07, /* 0x348b216c */
  93. v04 = 4.4111031494e-10; /* 0x2ff280c2 */
  94. float y0f(float x)
  95. {
  96. float z,s,c,ss,cc,u,v;
  97. int32_t hx,ix;
  98. GET_FLOAT_WORD(hx, x);
  99. ix = 0x7fffffff & hx;
  100. /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
  101. if (ix >= 0x7f800000)
  102. return 1.0f/(x+x*x);
  103. if (ix == 0)
  104. return -1.0f/0.0f;
  105. if (hx < 0)
  106. return 0.0f/0.0f;
  107. if (ix >= 0x40000000) { /* |x| >= 2.0 */
  108. /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
  109. * where x0 = x-pi/4
  110. * Better formula:
  111. * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
  112. * = 1/sqrt(2) * (sin(x) + cos(x))
  113. * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
  114. * = 1/sqrt(2) * (sin(x) - cos(x))
  115. * To avoid cancellation, use
  116. * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  117. * to compute the worse one.
  118. */
  119. s = sinf(x);
  120. c = cosf(x);
  121. ss = s-c;
  122. cc = s+c;
  123. /*
  124. * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
  125. * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
  126. */
  127. if (ix < 0x7f000000) { /* make sure x+x not overflow */
  128. z = -cosf(x+x);
  129. if (s*c < 0.0f)
  130. cc = z/ss;
  131. else
  132. ss = z/cc;
  133. }
  134. if (ix > 0x80000000)
  135. z = (invsqrtpi*ss)/sqrtf(x);
  136. else {
  137. u = pzerof(x);
  138. v = qzerof(x);
  139. z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
  140. }
  141. return z;
  142. }
  143. if (ix <= 0x32000000) { /* x < 2**-27 */
  144. return u00 + tpi*logf(x);
  145. }
  146. z = x*x;
  147. u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
  148. v = 1.0f+z*(v01+z*(v02+z*(v03+z*v04)));
  149. return u/v + tpi*(j0f(x)*logf(x));
  150. }
  151. /* The asymptotic expansions of pzero is
  152. * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
  153. * For x >= 2, We approximate pzero by
  154. * pzero(x) = 1 + (R/S)
  155. * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
  156. * S = 1 + pS0*s^2 + ... + pS4*s^10
  157. * and
  158. * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
  159. */
  160. static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  161. 0.0000000000e+00, /* 0x00000000 */
  162. -7.0312500000e-02, /* 0xbd900000 */
  163. -8.0816707611e+00, /* 0xc1014e86 */
  164. -2.5706311035e+02, /* 0xc3808814 */
  165. -2.4852163086e+03, /* 0xc51b5376 */
  166. -5.2530439453e+03, /* 0xc5a4285a */
  167. };
  168. static const float pS8[5] = {
  169. 1.1653436279e+02, /* 0x42e91198 */
  170. 3.8337448730e+03, /* 0x456f9beb */
  171. 4.0597855469e+04, /* 0x471e95db */
  172. 1.1675296875e+05, /* 0x47e4087c */
  173. 4.7627726562e+04, /* 0x473a0bba */
  174. };
  175. static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  176. -1.1412546255e-11, /* 0xad48c58a */
  177. -7.0312492549e-02, /* 0xbd8fffff */
  178. -4.1596107483e+00, /* 0xc0851b88 */
  179. -6.7674766541e+01, /* 0xc287597b */
  180. -3.3123129272e+02, /* 0xc3a59d9b */
  181. -3.4643338013e+02, /* 0xc3ad3779 */
  182. };
  183. static const float pS5[5] = {
  184. 6.0753936768e+01, /* 0x42730408 */
  185. 1.0512523193e+03, /* 0x44836813 */
  186. 5.9789707031e+03, /* 0x45bad7c4 */
  187. 9.6254453125e+03, /* 0x461665c8 */
  188. 2.4060581055e+03, /* 0x451660ee */
  189. };
  190. static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
  191. -2.5470459075e-09, /* 0xb12f081b */
  192. -7.0311963558e-02, /* 0xbd8fffb8 */
  193. -2.4090321064e+00, /* 0xc01a2d95 */
  194. -2.1965976715e+01, /* 0xc1afba52 */
  195. -5.8079170227e+01, /* 0xc2685112 */
  196. -3.1447946548e+01, /* 0xc1fb9565 */
  197. };
  198. static const float pS3[5] = {
  199. 3.5856033325e+01, /* 0x420f6c94 */
  200. 3.6151397705e+02, /* 0x43b4c1ca */
  201. 1.1936077881e+03, /* 0x44953373 */
  202. 1.1279968262e+03, /* 0x448cffe6 */
  203. 1.7358093262e+02, /* 0x432d94b8 */
  204. };
  205. static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  206. -8.8753431271e-08, /* 0xb3be98b7 */
  207. -7.0303097367e-02, /* 0xbd8ffb12 */
  208. -1.4507384300e+00, /* 0xbfb9b1cc */
  209. -7.6356959343e+00, /* 0xc0f4579f */
  210. -1.1193166733e+01, /* 0xc1331736 */
  211. -3.2336456776e+00, /* 0xc04ef40d */
  212. };
  213. static const float pS2[5] = {
  214. 2.2220300674e+01, /* 0x41b1c32d */
  215. 1.3620678711e+02, /* 0x430834f0 */
  216. 2.7047027588e+02, /* 0x43873c32 */
  217. 1.5387539673e+02, /* 0x4319e01a */
  218. 1.4657617569e+01, /* 0x416a859a */
  219. };
  220. static float pzerof(float x)
  221. {
  222. const float *p,*q;
  223. float z,r,s;
  224. int32_t ix;
  225. GET_FLOAT_WORD(ix, x);
  226. ix &= 0x7fffffff;
  227. if (ix >= 0x41000000){p = pR8; q = pS8;}
  228. else if (ix >= 0x40f71c58){p = pR5; q = pS5;}
  229. else if (ix >= 0x4036db68){p = pR3; q = pS3;}
  230. else if (ix >= 0x40000000){p = pR2; q = pS2;}
  231. z = 1.0f/(x*x);
  232. r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
  233. s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
  234. return 1.0f + r/s;
  235. }
  236. /* For x >= 8, the asymptotic expansions of qzero is
  237. * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
  238. * We approximate pzero by
  239. * qzero(x) = s*(-1.25 + (R/S))
  240. * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
  241. * S = 1 + qS0*s^2 + ... + qS5*s^12
  242. * and
  243. * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
  244. */
  245. static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  246. 0.0000000000e+00, /* 0x00000000 */
  247. 7.3242187500e-02, /* 0x3d960000 */
  248. 1.1768206596e+01, /* 0x413c4a93 */
  249. 5.5767340088e+02, /* 0x440b6b19 */
  250. 8.8591972656e+03, /* 0x460a6cca */
  251. 3.7014625000e+04, /* 0x471096a0 */
  252. };
  253. static const float qS8[6] = {
  254. 1.6377603149e+02, /* 0x4323c6aa */
  255. 8.0983447266e+03, /* 0x45fd12c2 */
  256. 1.4253829688e+05, /* 0x480b3293 */
  257. 8.0330925000e+05, /* 0x49441ed4 */
  258. 8.4050156250e+05, /* 0x494d3359 */
  259. -3.4389928125e+05, /* 0xc8a7eb69 */
  260. };
  261. static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  262. 1.8408595828e-11, /* 0x2da1ec79 */
  263. 7.3242180049e-02, /* 0x3d95ffff */
  264. 5.8356351852e+00, /* 0x40babd86 */
  265. 1.3511157227e+02, /* 0x43071c90 */
  266. 1.0272437744e+03, /* 0x448067cd */
  267. 1.9899779053e+03, /* 0x44f8bf4b */
  268. };
  269. static const float qS5[6] = {
  270. 8.2776611328e+01, /* 0x42a58da0 */
  271. 2.0778142090e+03, /* 0x4501dd07 */
  272. 1.8847289062e+04, /* 0x46933e94 */
  273. 5.6751113281e+04, /* 0x475daf1d */
  274. 3.5976753906e+04, /* 0x470c88c1 */
  275. -5.3543427734e+03, /* 0xc5a752be */
  276. };
  277. static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
  278. 4.3774099900e-09, /* 0x3196681b */
  279. 7.3241114616e-02, /* 0x3d95ff70 */
  280. 3.3442313671e+00, /* 0x405607e3 */
  281. 4.2621845245e+01, /* 0x422a7cc5 */
  282. 1.7080809021e+02, /* 0x432acedf */
  283. 1.6673394775e+02, /* 0x4326bbe4 */
  284. };
  285. static const float qS3[6] = {
  286. 4.8758872986e+01, /* 0x42430916 */
  287. 7.0968920898e+02, /* 0x44316c1c */
  288. 3.7041481934e+03, /* 0x4567825f */
  289. 6.4604252930e+03, /* 0x45c9e367 */
  290. 2.5163337402e+03, /* 0x451d4557 */
  291. -1.4924745178e+02, /* 0xc3153f59 */
  292. };
  293. static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  294. 1.5044444979e-07, /* 0x342189db */
  295. 7.3223426938e-02, /* 0x3d95f62a */
  296. 1.9981917143e+00, /* 0x3fffc4bf */
  297. 1.4495602608e+01, /* 0x4167edfd */
  298. 3.1666231155e+01, /* 0x41fd5471 */
  299. 1.6252708435e+01, /* 0x4182058c */
  300. };
  301. static const float qS2[6] = {
  302. 3.0365585327e+01, /* 0x41f2ecb8 */
  303. 2.6934811401e+02, /* 0x4386ac8f */
  304. 8.4478375244e+02, /* 0x44533229 */
  305. 8.8293585205e+02, /* 0x445cbbe5 */
  306. 2.1266638184e+02, /* 0x4354aa98 */
  307. -5.3109550476e+00, /* 0xc0a9f358 */
  308. };
  309. static float qzerof(float x)
  310. {
  311. const float *p,*q;
  312. float s,r,z;
  313. int32_t ix;
  314. GET_FLOAT_WORD(ix, x);
  315. ix &= 0x7fffffff;
  316. if (ix >= 0x41000000){p = qR8; q = qS8;}
  317. else if (ix >= 0x40f71c58){p = qR5; q = qS5;}
  318. else if (ix >= 0x4036db68){p = qR3; q = qS3;}
  319. else if (ix >= 0x40000000){p = qR2; q = qS2;}
  320. z = 1.0f/(x*x);
  321. r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
  322. s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
  323. return (-.125f + r/s)/x;
  324. }