log.c 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. /* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /* log(x)
  13. * Return the logrithm of x
  14. *
  15. * Method :
  16. * 1. Argument Reduction: find k and f such that
  17. * x = 2^k * (1+f),
  18. * where sqrt(2)/2 < 1+f < sqrt(2) .
  19. *
  20. * 2. Approximation of log(1+f).
  21. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  22. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  23. * = 2s + s*R
  24. * We use a special Remez algorithm on [0,0.1716] to generate
  25. * a polynomial of degree 14 to approximate R The maximum error
  26. * of this polynomial approximation is bounded by 2**-58.45. In
  27. * other words,
  28. * 2 4 6 8 10 12 14
  29. * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
  30. * (the values of Lg1 to Lg7 are listed in the program)
  31. * and
  32. * | 2 14 | -58.45
  33. * | Lg1*s +...+Lg7*s - R(z) | <= 2
  34. * | |
  35. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  36. * In order to guarantee error in log below 1ulp, we compute log
  37. * by
  38. * log(1+f) = f - s*(f - R) (if f is not too large)
  39. * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
  40. *
  41. * 3. Finally, log(x) = k*ln2 + log(1+f).
  42. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  43. * Here ln2 is split into two floating point number:
  44. * ln2_hi + ln2_lo,
  45. * where n*ln2_hi is always exact for |n| < 2000.
  46. *
  47. * Special cases:
  48. * log(x) is NaN with signal if x < 0 (including -INF) ;
  49. * log(+INF) is +INF; log(0) is -INF with signal;
  50. * log(NaN) is that NaN with no signal.
  51. *
  52. * Accuracy:
  53. * according to an error analysis, the error is always less than
  54. * 1 ulp (unit in the last place).
  55. *
  56. * Constants:
  57. * The hexadecimal values are the intended ones for the following
  58. * constants. The decimal values may be used, provided that the
  59. * compiler will convert from decimal to binary accurately enough
  60. * to produce the hexadecimal values shown.
  61. */
  62. #include "libm.h"
  63. static const double
  64. ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
  65. ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
  66. two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
  67. Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  68. Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  69. Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  70. Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  71. Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  72. Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  73. Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  74. double log(double x)
  75. {
  76. double hfsq,f,s,z,R,w,t1,t2,dk;
  77. int32_t k,hx,i,j;
  78. uint32_t lx;
  79. EXTRACT_WORDS(hx, lx, x);
  80. k = 0;
  81. if (hx < 0x00100000) { /* x < 2**-1022 */
  82. if (((hx&0x7fffffff)|lx) == 0)
  83. return -two54/0.0; /* log(+-0)=-inf */
  84. if (hx < 0)
  85. return (x-x)/0.0; /* log(-#) = NaN */
  86. /* subnormal number, scale up x */
  87. k -= 54;
  88. x *= two54;
  89. GET_HIGH_WORD(hx,x);
  90. }
  91. if (hx >= 0x7ff00000)
  92. return x+x;
  93. k += (hx>>20) - 1023;
  94. hx &= 0x000fffff;
  95. i = (hx+0x95f64)&0x100000;
  96. SET_HIGH_WORD(x, hx|(i^0x3ff00000)); /* normalize x or x/2 */
  97. k += i>>20;
  98. f = x - 1.0;
  99. if ((0x000fffff&(2+hx)) < 3) { /* -2**-20 <= f < 2**-20 */
  100. if (f == 0.0) {
  101. if (k == 0) {
  102. return 0.0;
  103. }
  104. dk = (double)k;
  105. return dk*ln2_hi + dk*ln2_lo;
  106. }
  107. R = f*f*(0.5-0.33333333333333333*f);
  108. if (k == 0)
  109. return f - R;
  110. dk = (double)k;
  111. return dk*ln2_hi - ((R-dk*ln2_lo)-f);
  112. }
  113. s = f/(2.0+f);
  114. dk = (double)k;
  115. z = s*s;
  116. i = hx - 0x6147a;
  117. w = z*z;
  118. j = 0x6b851 - hx;
  119. t1 = w*(Lg2+w*(Lg4+w*Lg6));
  120. t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  121. i |= j;
  122. R = t2 + t1;
  123. if (i > 0) {
  124. hfsq = 0.5*f*f;
  125. if (k == 0)
  126. return f - (hfsq-s*(hfsq+R));
  127. return dk*ln2_hi - ((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
  128. } else {
  129. if (k == 0)
  130. return f - s*(f-R);
  131. return dk*ln2_hi - ((s*(f-R)-dk*ln2_lo)-f);
  132. }
  133. }