12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- /* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- /*
- * Return the base 10 logarithm of x. See e_log.c and k_log.h for most
- * comments.
- *
- * log10(x) = (f - 0.5*f*f + k_log1p(f)) / ln10 + k * log10(2)
- * in not-quite-routine extra precision.
- */
- #include "libm.h"
- #include "__log1p.h"
- static const double
- two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
- ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
- ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */
- log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
- log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
- double log10(double x)
- {
- double f,hfsq,hi,lo,r,val_hi,val_lo,w,y,y2;
- int32_t i,k,hx;
- uint32_t lx;
- EXTRACT_WORDS(hx, lx, x);
- k = 0;
- if (hx < 0x00100000) { /* x < 2**-1022 */
- if (((hx&0x7fffffff)|lx) == 0)
- return -two54/0.0; /* log(+-0)=-inf */
- if (hx<0)
- return (x-x)/0.0; /* log(-#) = NaN */
- /* subnormal number, scale up x */
- k -= 54;
- x *= two54;
- GET_HIGH_WORD(hx, x);
- }
- if (hx >= 0x7ff00000)
- return x+x;
- if (hx == 0x3ff00000 && lx == 0)
- return 0.0; /* log(1) = +0 */
- k += (hx>>20) - 1023;
- hx &= 0x000fffff;
- i = (hx+0x95f64)&0x100000;
- SET_HIGH_WORD(x, hx|(i^0x3ff00000)); /* normalize x or x/2 */
- k += i>>20;
- y = (double)k;
- f = x - 1.0;
- hfsq = 0.5*f*f;
- r = __log1p(f);
- /* See log2.c for details. */
- hi = f - hfsq;
- SET_LOW_WORD(hi, 0);
- lo = (f - hi) - hfsq + r;
- val_hi = hi*ivln10hi;
- y2 = y*log10_2hi;
- val_lo = y*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
- /*
- * Extra precision in for adding y*log10_2hi is not strictly needed
- * since there is no very large cancellation near x = sqrt(2) or
- * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
- * with some parallelism and it reduces the error for many args.
- */
- w = y2 + val_hi;
- val_lo += (y2 - w) + val_hi;
- val_hi = w;
- return val_lo + val_hi;
- }
|