__cosl.c 2.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. /* origin: FreeBSD /usr/src/lib/msun/ld80/k_cosl.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
  6. *
  7. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  8. * Permission to use, copy, modify, and distribute this
  9. * software is freely granted, provided that this notice
  10. * is preserved.
  11. * ====================================================
  12. */
  13. #include "libm.h"
  14. #if LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
  15. /*
  16. * ld80 version of __cos.c. See __cos.c for most comments.
  17. */
  18. /*
  19. * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
  20. * |cos(x) - c(x)| < 2**-75.1
  21. *
  22. * The coefficients of c(x) were generated by a pari-gp script using
  23. * a Remez algorithm that searches for the best higher coefficients
  24. * after rounding leading coefficients to a specified precision.
  25. *
  26. * Simpler methods like Chebyshev or basic Remez barely suffice for
  27. * cos() in 64-bit precision, because we want the coefficient of x^2
  28. * to be precisely -0.5 so that multiplying by it is exact, and plain
  29. * rounding of the coefficients of a good polynomial approximation only
  30. * gives this up to about 64-bit precision. Plain rounding also gives
  31. * a mediocre approximation for the coefficient of x^4, but a rounding
  32. * error of 0.5 ulps for this coefficient would only contribute ~0.01
  33. * ulps to the final error, so this is unimportant. Rounding errors in
  34. * higher coefficients are even less important.
  35. *
  36. * In fact, coefficients above the x^4 one only need to have 53-bit
  37. * precision, and this is more efficient. We get this optimization
  38. * almost for free from the complications needed to search for the best
  39. * higher coefficients.
  40. */
  41. static const long double
  42. C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */
  43. static const double
  44. C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */
  45. C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */
  46. C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */
  47. C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */
  48. C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */
  49. C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */
  50. long double __cosl(long double x, long double y)
  51. {
  52. long double hz,z,r,w;
  53. z = x*x;
  54. r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7))))));
  55. hz = 0.5*z;
  56. w = 1.0-hz;
  57. return w + (((1.0-w)-hz) + (z*r-x*y));
  58. }
  59. #endif