pow.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. /* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Permission to use, copy, modify, and distribute this
  7. * software is freely granted, provided that this notice
  8. * is preserved.
  9. * ====================================================
  10. */
  11. /* pow(x,y) return x**y
  12. *
  13. * n
  14. * Method: Let x = 2 * (1+f)
  15. * 1. Compute and return log2(x) in two pieces:
  16. * log2(x) = w1 + w2,
  17. * where w1 has 53-24 = 29 bit trailing zeros.
  18. * 2. Perform y*log2(x) = n+y' by simulating muti-precision
  19. * arithmetic, where |y'|<=0.5.
  20. * 3. Return x**y = 2**n*exp(y'*log2)
  21. *
  22. * Special cases:
  23. * 1. (anything) ** 0 is 1
  24. * 2. 1 ** (anything) is 1
  25. * 3. (anything except 1) ** NAN is NAN
  26. * 4. NAN ** (anything except 0) is NAN
  27. * 5. +-(|x| > 1) ** +INF is +INF
  28. * 6. +-(|x| > 1) ** -INF is +0
  29. * 7. +-(|x| < 1) ** +INF is +0
  30. * 8. +-(|x| < 1) ** -INF is +INF
  31. * 9. -1 ** +-INF is 1
  32. * 10. +0 ** (+anything except 0, NAN) is +0
  33. * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
  34. * 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero
  35. * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero
  36. * 14. -0 ** (+odd integer) is -0
  37. * 15. -0 ** (-odd integer) is -INF, raise divbyzero
  38. * 16. +INF ** (+anything except 0,NAN) is +INF
  39. * 17. +INF ** (-anything except 0,NAN) is +0
  40. * 18. -INF ** (+odd integer) is -INF
  41. * 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
  42. * 20. (anything) ** 1 is (anything)
  43. * 21. (anything) ** -1 is 1/(anything)
  44. * 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
  45. * 23. (-anything except 0 and inf) ** (non-integer) is NAN
  46. *
  47. * Accuracy:
  48. * pow(x,y) returns x**y nearly rounded. In particular
  49. * pow(integer,integer)
  50. * always returns the correct integer provided it is
  51. * representable.
  52. *
  53. * Constants :
  54. * The hexadecimal values are the intended ones for the following
  55. * constants. The decimal values may be used, provided that the
  56. * compiler will convert from decimal to binary accurately enough
  57. * to produce the hexadecimal values shown.
  58. */
  59. #include "libm.h"
  60. static const double
  61. bp[] = {1.0, 1.5,},
  62. dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
  63. dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
  64. two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
  65. huge = 1.0e300,
  66. tiny = 1.0e-300,
  67. /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  68. L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
  69. L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
  70. L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
  71. L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
  72. L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
  73. L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
  74. P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
  75. P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
  76. P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
  77. P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
  78. P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
  79. lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
  80. lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
  81. lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
  82. ovt = 8.0085662595372944372e-017, /* -(1024-log2(ovfl+.5ulp)) */
  83. cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
  84. cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
  85. cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
  86. ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
  87. ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
  88. ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
  89. double pow(double x, double y)
  90. {
  91. double z,ax,z_h,z_l,p_h,p_l;
  92. double y1,t1,t2,r,s,t,u,v,w;
  93. int32_t i,j,k,yisint,n;
  94. int32_t hx,hy,ix,iy;
  95. uint32_t lx,ly;
  96. EXTRACT_WORDS(hx, lx, x);
  97. EXTRACT_WORDS(hy, ly, y);
  98. ix = hx & 0x7fffffff;
  99. iy = hy & 0x7fffffff;
  100. /* x**0 = 1, even if x is NaN */
  101. if ((iy|ly) == 0)
  102. return 1.0;
  103. /* 1**y = 1, even if y is NaN */
  104. if (hx == 0x3ff00000 && lx == 0)
  105. return 1.0;
  106. /* NaN if either arg is NaN */
  107. if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0) ||
  108. iy > 0x7ff00000 || (iy == 0x7ff00000 && ly != 0))
  109. return x + y;
  110. /* determine if y is an odd int when x < 0
  111. * yisint = 0 ... y is not an integer
  112. * yisint = 1 ... y is an odd int
  113. * yisint = 2 ... y is an even int
  114. */
  115. yisint = 0;
  116. if (hx < 0) {
  117. if (iy >= 0x43400000)
  118. yisint = 2; /* even integer y */
  119. else if (iy >= 0x3ff00000) {
  120. k = (iy>>20) - 0x3ff; /* exponent */
  121. if (k > 20) {
  122. j = ly>>(52-k);
  123. if ((j<<(52-k)) == ly)
  124. yisint = 2 - (j&1);
  125. } else if (ly == 0) {
  126. j = iy>>(20-k);
  127. if ((j<<(20-k)) == iy)
  128. yisint = 2 - (j&1);
  129. }
  130. }
  131. }
  132. /* special value of y */
  133. if (ly == 0) {
  134. if (iy == 0x7ff00000) { /* y is +-inf */
  135. if (((ix-0x3ff00000)|lx) == 0) /* (-1)**+-inf is 1 */
  136. return 1.0;
  137. else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
  138. return hy >= 0 ? y : 0.0;
  139. else if ((ix|lx) != 0) /* (|x|<1)**+-inf = 0,inf if x!=0 */
  140. return hy >= 0 ? 0.0 : -y;
  141. }
  142. if (iy == 0x3ff00000) { /* y is +-1 */
  143. if (hy >= 0)
  144. return x;
  145. y = 1/x;
  146. #if FLT_EVAL_METHOD!=0
  147. {
  148. union {double f; uint64_t i;} u = {y};
  149. uint64_t i = u.i & -1ULL/2;
  150. if (i>>52 == 0 && (i&(i-1)))
  151. FORCE_EVAL((float)y);
  152. }
  153. #endif
  154. return y;
  155. }
  156. if (hy == 0x40000000) /* y is 2 */
  157. return x*x;
  158. if (hy == 0x3fe00000) { /* y is 0.5 */
  159. if (hx >= 0) /* x >= +0 */
  160. return sqrt(x);
  161. }
  162. }
  163. ax = fabs(x);
  164. /* special value of x */
  165. if (lx == 0) {
  166. if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { /* x is +-0,+-inf,+-1 */
  167. z = ax;
  168. if (hy < 0) /* z = (1/|x|) */
  169. z = 1.0/z;
  170. if (hx < 0) {
  171. if (((ix-0x3ff00000)|yisint) == 0) {
  172. z = (z-z)/(z-z); /* (-1)**non-int is NaN */
  173. } else if (yisint == 1)
  174. z = -z; /* (x<0)**odd = -(|x|**odd) */
  175. }
  176. return z;
  177. }
  178. }
  179. s = 1.0; /* sign of result */
  180. if (hx < 0) {
  181. if (yisint == 0) /* (x<0)**(non-int) is NaN */
  182. return (x-x)/(x-x);
  183. if (yisint == 1) /* (x<0)**(odd int) */
  184. s = -1.0;
  185. }
  186. /* |y| is huge */
  187. if (iy > 0x41e00000) { /* if |y| > 2**31 */
  188. if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */
  189. if (ix <= 0x3fefffff)
  190. return hy < 0 ? huge*huge : tiny*tiny;
  191. if (ix >= 0x3ff00000)
  192. return hy > 0 ? huge*huge : tiny*tiny;
  193. }
  194. /* over/underflow if x is not close to one */
  195. if (ix < 0x3fefffff)
  196. return hy < 0 ? s*huge*huge : s*tiny*tiny;
  197. if (ix > 0x3ff00000)
  198. return hy > 0 ? s*huge*huge : s*tiny*tiny;
  199. /* now |1-x| is tiny <= 2**-20, suffice to compute
  200. log(x) by x-x^2/2+x^3/3-x^4/4 */
  201. t = ax - 1.0; /* t has 20 trailing zeros */
  202. w = (t*t)*(0.5 - t*(0.3333333333333333333333-t*0.25));
  203. u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
  204. v = t*ivln2_l - w*ivln2;
  205. t1 = u + v;
  206. SET_LOW_WORD(t1, 0);
  207. t2 = v - (t1-u);
  208. } else {
  209. double ss,s2,s_h,s_l,t_h,t_l;
  210. n = 0;
  211. /* take care subnormal number */
  212. if (ix < 0x00100000) {
  213. ax *= two53;
  214. n -= 53;
  215. GET_HIGH_WORD(ix,ax);
  216. }
  217. n += ((ix)>>20) - 0x3ff;
  218. j = ix & 0x000fffff;
  219. /* determine interval */
  220. ix = j | 0x3ff00000; /* normalize ix */
  221. if (j <= 0x3988E) /* |x|<sqrt(3/2) */
  222. k = 0;
  223. else if (j < 0xBB67A) /* |x|<sqrt(3) */
  224. k = 1;
  225. else {
  226. k = 0;
  227. n += 1;
  228. ix -= 0x00100000;
  229. }
  230. SET_HIGH_WORD(ax, ix);
  231. /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
  232. u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
  233. v = 1.0/(ax+bp[k]);
  234. ss = u*v;
  235. s_h = ss;
  236. SET_LOW_WORD(s_h, 0);
  237. /* t_h=ax+bp[k] High */
  238. t_h = 0.0;
  239. SET_HIGH_WORD(t_h, ((ix>>1)|0x20000000) + 0x00080000 + (k<<18));
  240. t_l = ax - (t_h-bp[k]);
  241. s_l = v*((u-s_h*t_h)-s_h*t_l);
  242. /* compute log(ax) */
  243. s2 = ss*ss;
  244. r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
  245. r += s_l*(s_h+ss);
  246. s2 = s_h*s_h;
  247. t_h = 3.0 + s2 + r;
  248. SET_LOW_WORD(t_h, 0);
  249. t_l = r - ((t_h-3.0)-s2);
  250. /* u+v = ss*(1+...) */
  251. u = s_h*t_h;
  252. v = s_l*t_h + t_l*ss;
  253. /* 2/(3log2)*(ss+...) */
  254. p_h = u + v;
  255. SET_LOW_WORD(p_h, 0);
  256. p_l = v - (p_h-u);
  257. z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
  258. z_l = cp_l*p_h+p_l*cp + dp_l[k];
  259. /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
  260. t = (double)n;
  261. t1 = ((z_h + z_l) + dp_h[k]) + t;
  262. SET_LOW_WORD(t1, 0);
  263. t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
  264. }
  265. /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
  266. y1 = y;
  267. SET_LOW_WORD(y1, 0);
  268. p_l = (y-y1)*t1 + y*t2;
  269. p_h = y1*t1;
  270. z = p_l + p_h;
  271. EXTRACT_WORDS(j, i, z);
  272. if (j >= 0x40900000) { /* z >= 1024 */
  273. if (((j-0x40900000)|i) != 0) /* if z > 1024 */
  274. return s*huge*huge; /* overflow */
  275. if (p_l + ovt > z - p_h)
  276. return s*huge*huge; /* overflow */
  277. } else if ((j&0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */ // FIXME: instead of abs(j) use unsigned j
  278. if (((j-0xc090cc00)|i) != 0) /* z < -1075 */
  279. return s*tiny*tiny; /* underflow */
  280. if (p_l <= z - p_h)
  281. return s*tiny*tiny; /* underflow */
  282. }
  283. /*
  284. * compute 2**(p_h+p_l)
  285. */
  286. i = j & 0x7fffffff;
  287. k = (i>>20) - 0x3ff;
  288. n = 0;
  289. if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
  290. n = j + (0x00100000>>(k+1));
  291. k = ((n&0x7fffffff)>>20) - 0x3ff; /* new k for n */
  292. t = 0.0;
  293. SET_HIGH_WORD(t, n & ~(0x000fffff>>k));
  294. n = ((n&0x000fffff)|0x00100000)>>(20-k);
  295. if (j < 0)
  296. n = -n;
  297. p_h -= t;
  298. }
  299. t = p_l + p_h;
  300. SET_LOW_WORD(t, 0);
  301. u = t*lg2_h;
  302. v = (p_l-(t-p_h))*lg2 + t*lg2_l;
  303. z = u + v;
  304. w = v - (z-u);
  305. t = z*z;
  306. t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  307. r = (z*t1)/(t1-2.0) - (w + z*w);
  308. z = 1.0 - (r-z);
  309. GET_HIGH_WORD(j, z);
  310. j += n<<20;
  311. if ((j>>20) <= 0) /* subnormal output */
  312. z = scalbn(z,n);
  313. else
  314. SET_HIGH_WORD(z, j);
  315. return s*z;
  316. }