powf.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. /* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */
  2. /*
  3. * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
  4. */
  5. /*
  6. * ====================================================
  7. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  8. *
  9. * Developed at SunPro, a Sun Microsystems, Inc. business.
  10. * Permission to use, copy, modify, and distribute this
  11. * software is freely granted, provided that this notice
  12. * is preserved.
  13. * ====================================================
  14. */
  15. #include "libm.h"
  16. static const float
  17. bp[] = {1.0, 1.5,},
  18. dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
  19. dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
  20. two24 = 16777216.0, /* 0x4b800000 */
  21. huge = 1.0e30,
  22. tiny = 1.0e-30,
  23. /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  24. L1 = 6.0000002384e-01, /* 0x3f19999a */
  25. L2 = 4.2857143283e-01, /* 0x3edb6db7 */
  26. L3 = 3.3333334327e-01, /* 0x3eaaaaab */
  27. L4 = 2.7272811532e-01, /* 0x3e8ba305 */
  28. L5 = 2.3066075146e-01, /* 0x3e6c3255 */
  29. L6 = 2.0697501302e-01, /* 0x3e53f142 */
  30. P1 = 1.6666667163e-01, /* 0x3e2aaaab */
  31. P2 = -2.7777778450e-03, /* 0xbb360b61 */
  32. P3 = 6.6137559770e-05, /* 0x388ab355 */
  33. P4 = -1.6533901999e-06, /* 0xb5ddea0e */
  34. P5 = 4.1381369442e-08, /* 0x3331bb4c */
  35. lg2 = 6.9314718246e-01, /* 0x3f317218 */
  36. lg2_h = 6.93145752e-01, /* 0x3f317200 */
  37. lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
  38. ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
  39. cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
  40. cp_h = 9.6191406250e-01, /* 0x3f764000 =12b cp */
  41. cp_l = -1.1736857402e-04, /* 0xb8f623c6 =tail of cp_h */
  42. ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
  43. ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
  44. ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
  45. float powf(float x, float y)
  46. {
  47. float z,ax,z_h,z_l,p_h,p_l;
  48. float y1,t1,t2,r,s,sn,t,u,v,w;
  49. int32_t i,j,k,yisint,n;
  50. int32_t hx,hy,ix,iy,is;
  51. GET_FLOAT_WORD(hx, x);
  52. GET_FLOAT_WORD(hy, y);
  53. ix = hx & 0x7fffffff;
  54. iy = hy & 0x7fffffff;
  55. /* x**0 = 1, even if x is NaN */
  56. if (iy == 0)
  57. return 1.0f;
  58. /* 1**y = 1, even if y is NaN */
  59. if (hx == 0x3f800000)
  60. return 1.0f;
  61. /* NaN if either arg is NaN */
  62. if (ix > 0x7f800000 || iy > 0x7f800000)
  63. return x + y;
  64. /* determine if y is an odd int when x < 0
  65. * yisint = 0 ... y is not an integer
  66. * yisint = 1 ... y is an odd int
  67. * yisint = 2 ... y is an even int
  68. */
  69. yisint = 0;
  70. if (hx < 0) {
  71. if (iy >= 0x4b800000)
  72. yisint = 2; /* even integer y */
  73. else if (iy >= 0x3f800000) {
  74. k = (iy>>23) - 0x7f; /* exponent */
  75. j = iy>>(23-k);
  76. if ((j<<(23-k)) == iy)
  77. yisint = 2 - (j & 1);
  78. }
  79. }
  80. /* special value of y */
  81. if (iy == 0x7f800000) { /* y is +-inf */
  82. if (ix == 0x3f800000) /* (-1)**+-inf is 1 */
  83. return 1.0f;
  84. else if (ix > 0x3f800000) /* (|x|>1)**+-inf = inf,0 */
  85. return hy >= 0 ? y : 0.0f;
  86. else /* (|x|<1)**+-inf = 0,inf */
  87. return hy >= 0 ? 0.0f: -y;
  88. }
  89. if (iy == 0x3f800000) /* y is +-1 */
  90. return hy >= 0 ? x : 1.0f/x;
  91. if (hy == 0x40000000) /* y is 2 */
  92. return x*x;
  93. if (hy == 0x3f000000) { /* y is 0.5 */
  94. if (hx >= 0) /* x >= +0 */
  95. return sqrtf(x);
  96. }
  97. ax = fabsf(x);
  98. /* special value of x */
  99. if (ix == 0x7f800000 || ix == 0 || ix == 0x3f800000) { /* x is +-0,+-inf,+-1 */
  100. z = ax;
  101. if (hy < 0) /* z = (1/|x|) */
  102. z = 1.0f/z;
  103. if (hx < 0) {
  104. if (((ix-0x3f800000)|yisint) == 0) {
  105. z = (z-z)/(z-z); /* (-1)**non-int is NaN */
  106. } else if (yisint == 1)
  107. z = -z; /* (x<0)**odd = -(|x|**odd) */
  108. }
  109. return z;
  110. }
  111. sn = 1.0f; /* sign of result */
  112. if (hx < 0) {
  113. if (yisint == 0) /* (x<0)**(non-int) is NaN */
  114. return (x-x)/(x-x);
  115. if (yisint == 1) /* (x<0)**(odd int) */
  116. sn = -1.0f;
  117. }
  118. /* |y| is huge */
  119. if (iy > 0x4d000000) { /* if |y| > 2**27 */
  120. /* over/underflow if x is not close to one */
  121. if (ix < 0x3f7ffff8)
  122. return hy < 0 ? sn*huge*huge : sn*tiny*tiny;
  123. if (ix > 0x3f800007)
  124. return hy > 0 ? sn*huge*huge : sn*tiny*tiny;
  125. /* now |1-x| is tiny <= 2**-20, suffice to compute
  126. log(x) by x-x^2/2+x^3/3-x^4/4 */
  127. t = ax - 1; /* t has 20 trailing zeros */
  128. w = (t*t)*(0.5f - t*(0.333333333333f - t*0.25f));
  129. u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
  130. v = t*ivln2_l - w*ivln2;
  131. t1 = u + v;
  132. GET_FLOAT_WORD(is, t1);
  133. SET_FLOAT_WORD(t1, is & 0xfffff000);
  134. t2 = v - (t1-u);
  135. } else {
  136. float s2,s_h,s_l,t_h,t_l;
  137. n = 0;
  138. /* take care subnormal number */
  139. if (ix < 0x00800000) {
  140. ax *= two24;
  141. n -= 24;
  142. GET_FLOAT_WORD(ix, ax);
  143. }
  144. n += ((ix)>>23) - 0x7f;
  145. j = ix & 0x007fffff;
  146. /* determine interval */
  147. ix = j | 0x3f800000; /* normalize ix */
  148. if (j <= 0x1cc471) /* |x|<sqrt(3/2) */
  149. k = 0;
  150. else if (j < 0x5db3d7) /* |x|<sqrt(3) */
  151. k = 1;
  152. else {
  153. k = 0;
  154. n += 1;
  155. ix -= 0x00800000;
  156. }
  157. SET_FLOAT_WORD(ax, ix);
  158. /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
  159. u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
  160. v = 1.0f/(ax+bp[k]);
  161. s = u*v;
  162. s_h = s;
  163. GET_FLOAT_WORD(is, s_h);
  164. SET_FLOAT_WORD(s_h, is & 0xfffff000);
  165. /* t_h=ax+bp[k] High */
  166. is = ((ix>>1) & 0xfffff000) | 0x20000000;
  167. SET_FLOAT_WORD(t_h, is + 0x00400000 + (k<<21));
  168. t_l = ax - (t_h - bp[k]);
  169. s_l = v*((u - s_h*t_h) - s_h*t_l);
  170. /* compute log(ax) */
  171. s2 = s*s;
  172. r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
  173. r += s_l*(s_h+s);
  174. s2 = s_h*s_h;
  175. t_h = 3.0f + s2 + r;
  176. GET_FLOAT_WORD(is, t_h);
  177. SET_FLOAT_WORD(t_h, is & 0xfffff000);
  178. t_l = r - ((t_h - 3.0f) - s2);
  179. /* u+v = s*(1+...) */
  180. u = s_h*t_h;
  181. v = s_l*t_h + t_l*s;
  182. /* 2/(3log2)*(s+...) */
  183. p_h = u + v;
  184. GET_FLOAT_WORD(is, p_h);
  185. SET_FLOAT_WORD(p_h, is & 0xfffff000);
  186. p_l = v - (p_h - u);
  187. z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
  188. z_l = cp_l*p_h + p_l*cp+dp_l[k];
  189. /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
  190. t = (float)n;
  191. t1 = (((z_h + z_l) + dp_h[k]) + t);
  192. GET_FLOAT_WORD(is, t1);
  193. SET_FLOAT_WORD(t1, is & 0xfffff000);
  194. t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
  195. }
  196. /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
  197. GET_FLOAT_WORD(is, y);
  198. SET_FLOAT_WORD(y1, is & 0xfffff000);
  199. p_l = (y-y1)*t1 + y*t2;
  200. p_h = y1*t1;
  201. z = p_l + p_h;
  202. GET_FLOAT_WORD(j, z);
  203. if (j > 0x43000000) /* if z > 128 */
  204. return sn*huge*huge; /* overflow */
  205. else if (j == 0x43000000) { /* if z == 128 */
  206. if (p_l + ovt > z - p_h)
  207. return sn*huge*huge; /* overflow */
  208. } else if ((j&0x7fffffff) > 0x43160000) /* z < -150 */ // FIXME: check should be (uint32_t)j > 0xc3160000
  209. return sn*tiny*tiny; /* underflow */
  210. else if (j == 0xc3160000) { /* z == -150 */
  211. if (p_l <= z-p_h)
  212. return sn*tiny*tiny; /* underflow */
  213. }
  214. /*
  215. * compute 2**(p_h+p_l)
  216. */
  217. i = j & 0x7fffffff;
  218. k = (i>>23) - 0x7f;
  219. n = 0;
  220. if (i > 0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
  221. n = j + (0x00800000>>(k+1));
  222. k = ((n&0x7fffffff)>>23) - 0x7f; /* new k for n */
  223. SET_FLOAT_WORD(t, n & ~(0x007fffff>>k));
  224. n = ((n&0x007fffff)|0x00800000)>>(23-k);
  225. if (j < 0)
  226. n = -n;
  227. p_h -= t;
  228. }
  229. t = p_l + p_h;
  230. GET_FLOAT_WORD(is, t);
  231. SET_FLOAT_WORD(t, is & 0xffff8000);
  232. u = t*lg2_h;
  233. v = (p_l-(t-p_h))*lg2 + t*lg2_l;
  234. z = u + v;
  235. w = v - (z - u);
  236. t = z*z;
  237. t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  238. r = (z*t1)/(t1-2.0f) - (w+z*w);
  239. z = 1.0f - (r - z);
  240. GET_FLOAT_WORD(j, z);
  241. j += n<<23;
  242. if ((j>>23) <= 0) /* subnormal output */
  243. z = scalbnf(z, n);
  244. else
  245. SET_FLOAT_WORD(z, j);
  246. return sn*z;
  247. }