log1p.c 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. /* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /* double log1p(double x)
  13. * Return the natural logarithm of 1+x.
  14. *
  15. * Method :
  16. * 1. Argument Reduction: find k and f such that
  17. * 1+x = 2^k * (1+f),
  18. * where sqrt(2)/2 < 1+f < sqrt(2) .
  19. *
  20. * Note. If k=0, then f=x is exact. However, if k!=0, then f
  21. * may not be representable exactly. In that case, a correction
  22. * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
  23. * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
  24. * and add back the correction term c/u.
  25. * (Note: when x > 2**53, one can simply return log(x))
  26. *
  27. * 2. Approximation of log(1+f): See log.c
  28. *
  29. * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
  30. *
  31. * Special cases:
  32. * log1p(x) is NaN with signal if x < -1 (including -INF) ;
  33. * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
  34. * log1p(NaN) is that NaN with no signal.
  35. *
  36. * Accuracy:
  37. * according to an error analysis, the error is always less than
  38. * 1 ulp (unit in the last place).
  39. *
  40. * Constants:
  41. * The hexadecimal values are the intended ones for the following
  42. * constants. The decimal values may be used, provided that the
  43. * compiler will convert from decimal to binary accurately enough
  44. * to produce the hexadecimal values shown.
  45. *
  46. * Note: Assuming log() return accurate answer, the following
  47. * algorithm can be used to compute log1p(x) to within a few ULP:
  48. *
  49. * u = 1+x;
  50. * if(u==1.0) return x ; else
  51. * return log(u)*(x/(u-1.0));
  52. *
  53. * See HP-15C Advanced Functions Handbook, p.193.
  54. */
  55. #include "libm.h"
  56. static const double
  57. ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
  58. ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
  59. Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  60. Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  61. Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  62. Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  63. Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  64. Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  65. Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  66. double log1p(double x)
  67. {
  68. union {double f; uint64_t i;} u = {x};
  69. double_t hfsq,f,c,s,z,R,w,t1,t2,dk;
  70. uint32_t hx,hu;
  71. int k;
  72. hx = u.i>>32;
  73. k = 1;
  74. if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */
  75. if (hx >= 0xbff00000) { /* x <= -1.0 */
  76. if (x == -1)
  77. return x/0.0; /* log1p(-1) = -inf */
  78. return (x-x)/0.0; /* log1p(x<-1) = NaN */
  79. }
  80. if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */
  81. /* underflow if subnormal */
  82. if ((hx&0x7ff00000) == 0)
  83. FORCE_EVAL((float)x);
  84. return x;
  85. }
  86. if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
  87. k = 0;
  88. c = 0;
  89. f = x;
  90. }
  91. } else if (hx >= 0x7ff00000)
  92. return x;
  93. if (k) {
  94. u.f = 1 + x;
  95. hu = u.i>>32;
  96. hu += 0x3ff00000 - 0x3fe6a09e;
  97. k = (int)(hu>>20) - 0x3ff;
  98. /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
  99. if (k < 54) {
  100. c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
  101. c /= u.f;
  102. } else
  103. c = 0;
  104. /* reduce u into [sqrt(2)/2, sqrt(2)] */
  105. hu = (hu&0x000fffff) + 0x3fe6a09e;
  106. u.i = (uint64_t)hu<<32 | (u.i&0xffffffff);
  107. f = u.f - 1;
  108. }
  109. hfsq = 0.5*f*f;
  110. s = f/(2.0+f);
  111. z = s*s;
  112. w = z*z;
  113. t1 = w*(Lg2+w*(Lg4+w*Lg6));
  114. t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  115. R = t2 + t1;
  116. dk = k;
  117. return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
  118. }