erfl.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_erfl.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /*
  13. * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
  14. *
  15. * Permission to use, copy, modify, and distribute this software for any
  16. * purpose with or without fee is hereby granted, provided that the above
  17. * copyright notice and this permission notice appear in all copies.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  20. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  21. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  22. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  23. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  24. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  25. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  26. */
  27. /* double erf(double x)
  28. * double erfc(double x)
  29. * x
  30. * 2 |\
  31. * erf(x) = --------- | exp(-t*t)dt
  32. * sqrt(pi) \|
  33. * 0
  34. *
  35. * erfc(x) = 1-erf(x)
  36. * Note that
  37. * erf(-x) = -erf(x)
  38. * erfc(-x) = 2 - erfc(x)
  39. *
  40. * Method:
  41. * 1. For |x| in [0, 0.84375]
  42. * erf(x) = x + x*R(x^2)
  43. * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
  44. * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
  45. * Remark. The formula is derived by noting
  46. * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
  47. * and that
  48. * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
  49. * is close to one. The interval is chosen because the fix
  50. * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
  51. * near 0.6174), and by some experiment, 0.84375 is chosen to
  52. * guarantee the error is less than one ulp for erf.
  53. *
  54. * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
  55. * c = 0.84506291151 rounded to single (24 bits)
  56. * erf(x) = sign(x) * (c + P1(s)/Q1(s))
  57. * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
  58. * 1+(c+P1(s)/Q1(s)) if x < 0
  59. * Remark: here we use the taylor series expansion at x=1.
  60. * erf(1+s) = erf(1) + s*Poly(s)
  61. * = 0.845.. + P1(s)/Q1(s)
  62. * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
  63. *
  64. * 3. For x in [1.25,1/0.35(~2.857143)],
  65. * erfc(x) = (1/x)*exp(-x*x-0.5625+R1(z)/S1(z))
  66. * z=1/x^2
  67. * erf(x) = 1 - erfc(x)
  68. *
  69. * 4. For x in [1/0.35,107]
  70. * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
  71. * = 2.0 - (1/x)*exp(-x*x-0.5625+R2(z)/S2(z))
  72. * if -6.666<x<0
  73. * = 2.0 - tiny (if x <= -6.666)
  74. * z=1/x^2
  75. * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6.666, else
  76. * erf(x) = sign(x)*(1.0 - tiny)
  77. * Note1:
  78. * To compute exp(-x*x-0.5625+R/S), let s be a single
  79. * precision number and s := x; then
  80. * -x*x = -s*s + (s-x)*(s+x)
  81. * exp(-x*x-0.5626+R/S) =
  82. * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
  83. * Note2:
  84. * Here 4 and 5 make use of the asymptotic series
  85. * exp(-x*x)
  86. * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
  87. * x*sqrt(pi)
  88. *
  89. * 5. For inf > x >= 107
  90. * erf(x) = sign(x) *(1 - tiny) (raise inexact)
  91. * erfc(x) = tiny*tiny (raise underflow) if x > 0
  92. * = 2 - tiny if x<0
  93. *
  94. * 7. Special case:
  95. * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
  96. * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
  97. * erfc/erf(NaN) is NaN
  98. */
  99. #include "libm.h"
  100. #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
  101. long double erfl(long double x)
  102. {
  103. return erf(x);
  104. }
  105. long double erfcl(long double x)
  106. {
  107. return erfc(x);
  108. }
  109. #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
  110. static const long double
  111. erx = 0.845062911510467529296875L,
  112. /*
  113. * Coefficients for approximation to erf on [0,0.84375]
  114. */
  115. /* 8 * (2/sqrt(pi) - 1) */
  116. efx8 = 1.0270333367641005911692712249723613735048E0L,
  117. pp[6] = {
  118. 1.122751350964552113068262337278335028553E6L,
  119. -2.808533301997696164408397079650699163276E6L,
  120. -3.314325479115357458197119660818768924100E5L,
  121. -6.848684465326256109712135497895525446398E4L,
  122. -2.657817695110739185591505062971929859314E3L,
  123. -1.655310302737837556654146291646499062882E2L,
  124. },
  125. qq[6] = {
  126. 8.745588372054466262548908189000448124232E6L,
  127. 3.746038264792471129367533128637019611485E6L,
  128. 7.066358783162407559861156173539693900031E5L,
  129. 7.448928604824620999413120955705448117056E4L,
  130. 4.511583986730994111992253980546131408924E3L,
  131. 1.368902937933296323345610240009071254014E2L,
  132. /* 1.000000000000000000000000000000000000000E0 */
  133. },
  134. /*
  135. * Coefficients for approximation to erf in [0.84375,1.25]
  136. */
  137. /* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x)
  138. -0.15625 <= x <= +.25
  139. Peak relative error 8.5e-22 */
  140. pa[8] = {
  141. -1.076952146179812072156734957705102256059E0L,
  142. 1.884814957770385593365179835059971587220E2L,
  143. -5.339153975012804282890066622962070115606E1L,
  144. 4.435910679869176625928504532109635632618E1L,
  145. 1.683219516032328828278557309642929135179E1L,
  146. -2.360236618396952560064259585299045804293E0L,
  147. 1.852230047861891953244413872297940938041E0L,
  148. 9.394994446747752308256773044667843200719E-2L,
  149. },
  150. qa[7] = {
  151. 4.559263722294508998149925774781887811255E2L,
  152. 3.289248982200800575749795055149780689738E2L,
  153. 2.846070965875643009598627918383314457912E2L,
  154. 1.398715859064535039433275722017479994465E2L,
  155. 6.060190733759793706299079050985358190726E1L,
  156. 2.078695677795422351040502569964299664233E1L,
  157. 4.641271134150895940966798357442234498546E0L,
  158. /* 1.000000000000000000000000000000000000000E0 */
  159. },
  160. /*
  161. * Coefficients for approximation to erfc in [1.25,1/0.35]
  162. */
  163. /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2))
  164. 1/2.85711669921875 < 1/x < 1/1.25
  165. Peak relative error 3.1e-21 */
  166. ra[] = {
  167. 1.363566591833846324191000679620738857234E-1L,
  168. 1.018203167219873573808450274314658434507E1L,
  169. 1.862359362334248675526472871224778045594E2L,
  170. 1.411622588180721285284945138667933330348E3L,
  171. 5.088538459741511988784440103218342840478E3L,
  172. 8.928251553922176506858267311750789273656E3L,
  173. 7.264436000148052545243018622742770549982E3L,
  174. 2.387492459664548651671894725748959751119E3L,
  175. 2.220916652813908085449221282808458466556E2L,
  176. },
  177. sa[] = {
  178. -1.382234625202480685182526402169222331847E1L,
  179. -3.315638835627950255832519203687435946482E2L,
  180. -2.949124863912936259747237164260785326692E3L,
  181. -1.246622099070875940506391433635999693661E4L,
  182. -2.673079795851665428695842853070996219632E4L,
  183. -2.880269786660559337358397106518918220991E4L,
  184. -1.450600228493968044773354186390390823713E4L,
  185. -2.874539731125893533960680525192064277816E3L,
  186. -1.402241261419067750237395034116942296027E2L,
  187. /* 1.000000000000000000000000000000000000000E0 */
  188. },
  189. /*
  190. * Coefficients for approximation to erfc in [1/.35,107]
  191. */
  192. /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2))
  193. 1/6.6666259765625 < 1/x < 1/2.85711669921875
  194. Peak relative error 4.2e-22 */
  195. rb[] = {
  196. -4.869587348270494309550558460786501252369E-5L,
  197. -4.030199390527997378549161722412466959403E-3L,
  198. -9.434425866377037610206443566288917589122E-2L,
  199. -9.319032754357658601200655161585539404155E-1L,
  200. -4.273788174307459947350256581445442062291E0L,
  201. -8.842289940696150508373541814064198259278E0L,
  202. -7.069215249419887403187988144752613025255E0L,
  203. -1.401228723639514787920274427443330704764E0L,
  204. },
  205. sb[] = {
  206. 4.936254964107175160157544545879293019085E-3L,
  207. 1.583457624037795744377163924895349412015E-1L,
  208. 1.850647991850328356622940552450636420484E0L,
  209. 9.927611557279019463768050710008450625415E0L,
  210. 2.531667257649436709617165336779212114570E1L,
  211. 2.869752886406743386458304052862814690045E1L,
  212. 1.182059497870819562441683560749192539345E1L,
  213. /* 1.000000000000000000000000000000000000000E0 */
  214. },
  215. /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2))
  216. 1/107 <= 1/x <= 1/6.6666259765625
  217. Peak relative error 1.1e-21 */
  218. rc[] = {
  219. -8.299617545269701963973537248996670806850E-5L,
  220. -6.243845685115818513578933902532056244108E-3L,
  221. -1.141667210620380223113693474478394397230E-1L,
  222. -7.521343797212024245375240432734425789409E-1L,
  223. -1.765321928311155824664963633786967602934E0L,
  224. -1.029403473103215800456761180695263439188E0L,
  225. },
  226. sc[] = {
  227. 8.413244363014929493035952542677768808601E-3L,
  228. 2.065114333816877479753334599639158060979E-1L,
  229. 1.639064941530797583766364412782135680148E0L,
  230. 4.936788463787115555582319302981666347450E0L,
  231. 5.005177727208955487404729933261347679090E0L,
  232. /* 1.000000000000000000000000000000000000000E0 */
  233. };
  234. static long double erfc1(long double x)
  235. {
  236. long double s,P,Q;
  237. s = fabsl(x) - 1;
  238. P = pa[0] + s * (pa[1] + s * (pa[2] +
  239. s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
  240. Q = qa[0] + s * (qa[1] + s * (qa[2] +
  241. s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
  242. return 1 - erx - P / Q;
  243. }
  244. static long double erfc2(uint32_t ix, long double x)
  245. {
  246. union ldshape u;
  247. long double s,z,R,S;
  248. if (ix < 0x3fffa000) /* 0.84375 <= |x| < 1.25 */
  249. return erfc1(x);
  250. x = fabsl(x);
  251. s = 1 / (x * x);
  252. if (ix < 0x4000b6db) { /* 1.25 <= |x| < 2.857 ~ 1/.35 */
  253. R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +
  254. s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));
  255. S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +
  256. s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));
  257. } else { /* 2.857 <= |x| */
  258. R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +
  259. s * (rb[5] + s * (rb[6] + s * rb[7]))))));
  260. S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +
  261. s * (sb[5] + s * (sb[6] + s))))));
  262. }
  263. if (ix < 0x4000b6db) { /* 1.25 <= |x| < 2.85711669921875 ~ 1/.35 */
  264. R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +
  265. s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));
  266. S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +
  267. s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));
  268. } else if (ix < 0x4001d555) { /* 6.6666259765625 > |x| >= 1/.35 ~ 2.857143 */
  269. R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +
  270. s * (rb[5] + s * (rb[6] + s * rb[7]))))));
  271. S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +
  272. s * (sb[5] + s * (sb[6] + s))))));
  273. } else { /* 107 > |x| >= 6.666 */
  274. R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] +
  275. s * (rc[4] + s * rc[5]))));
  276. S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] +
  277. s * (sc[4] + s))));
  278. }
  279. u.f = x;
  280. u.i.m &= -1ULL << 40;
  281. z = u.f;
  282. return expl(-z*z - 0.5625) * expl((z - x) * (z + x) + R / S) / x;
  283. }
  284. long double erfl(long double x)
  285. {
  286. long double r, s, z, y;
  287. union ldshape u = {x};
  288. uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
  289. int sign = u.i.se >> 15;
  290. if (ix >= 0x7fff0000)
  291. /* erf(nan)=nan, erf(+-inf)=+-1 */
  292. return 1 - 2*sign + 1/x;
  293. if (ix < 0x3ffed800) { /* |x| < 0.84375 */
  294. if (ix < 0x3fde8000) { /* |x| < 2**-33 */
  295. return 0.125 * (8 * x + efx8 * x); /* avoid underflow */
  296. }
  297. z = x * x;
  298. r = pp[0] + z * (pp[1] +
  299. z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
  300. s = qq[0] + z * (qq[1] +
  301. z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
  302. y = r / s;
  303. return x + x * y;
  304. }
  305. if (ix < 0x4001d555) /* |x| < 6.6666259765625 */
  306. y = 1 - erfc2(ix,x);
  307. else
  308. y = 1 - 0x1p-16382L;
  309. return sign ? -y : y;
  310. }
  311. long double erfcl(long double x)
  312. {
  313. long double r, s, z, y;
  314. union ldshape u = {x};
  315. uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
  316. int sign = u.i.se >> 15;
  317. if (ix >= 0x7fff0000)
  318. /* erfc(nan) = nan, erfc(+-inf) = 0,2 */
  319. return 2*sign + 1/x;
  320. if (ix < 0x3ffed800) { /* |x| < 0.84375 */
  321. if (ix < 0x3fbe0000) /* |x| < 2**-65 */
  322. return 1.0 - x;
  323. z = x * x;
  324. r = pp[0] + z * (pp[1] +
  325. z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
  326. s = qq[0] + z * (qq[1] +
  327. z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
  328. y = r / s;
  329. if (ix < 0x3ffd8000) /* x < 1/4 */
  330. return 1.0 - (x + x * y);
  331. return 0.5 - (x - 0.5 + x * y);
  332. }
  333. if (ix < 0x4005d600) /* |x| < 107 */
  334. return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
  335. y = 0x1p-16382L;
  336. return sign ? 2 - y : y*y;
  337. }
  338. #endif