1
0

lgamma_r.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284
  1. /* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. *
  12. */
  13. /* lgamma_r(x, signgamp)
  14. * Reentrant version of the logarithm of the Gamma function
  15. * with user provide pointer for the sign of Gamma(x).
  16. *
  17. * Method:
  18. * 1. Argument Reduction for 0 < x <= 8
  19. * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
  20. * reduce x to a number in [1.5,2.5] by
  21. * lgamma(1+s) = log(s) + lgamma(s)
  22. * for example,
  23. * lgamma(7.3) = log(6.3) + lgamma(6.3)
  24. * = log(6.3*5.3) + lgamma(5.3)
  25. * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
  26. * 2. Polynomial approximation of lgamma around its
  27. * minimun ymin=1.461632144968362245 to maintain monotonicity.
  28. * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
  29. * Let z = x-ymin;
  30. * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
  31. * where
  32. * poly(z) is a 14 degree polynomial.
  33. * 2. Rational approximation in the primary interval [2,3]
  34. * We use the following approximation:
  35. * s = x-2.0;
  36. * lgamma(x) = 0.5*s + s*P(s)/Q(s)
  37. * with accuracy
  38. * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
  39. * Our algorithms are based on the following observation
  40. *
  41. * zeta(2)-1 2 zeta(3)-1 3
  42. * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
  43. * 2 3
  44. *
  45. * where Euler = 0.5771... is the Euler constant, which is very
  46. * close to 0.5.
  47. *
  48. * 3. For x>=8, we have
  49. * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
  50. * (better formula:
  51. * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
  52. * Let z = 1/x, then we approximation
  53. * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
  54. * by
  55. * 3 5 11
  56. * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
  57. * where
  58. * |w - f(z)| < 2**-58.74
  59. *
  60. * 4. For negative x, since (G is gamma function)
  61. * -x*G(-x)*G(x) = pi/sin(pi*x),
  62. * we have
  63. * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
  64. * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
  65. * Hence, for x<0, signgam = sign(sin(pi*x)) and
  66. * lgamma(x) = log(|Gamma(x)|)
  67. * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
  68. * Note: one should avoid compute pi*(-x) directly in the
  69. * computation of sin(pi*(-x)).
  70. *
  71. * 5. Special Cases
  72. * lgamma(2+s) ~ s*(1-Euler) for tiny s
  73. * lgamma(1) = lgamma(2) = 0
  74. * lgamma(x) ~ -log(|x|) for tiny x
  75. * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
  76. * lgamma(inf) = inf
  77. * lgamma(-inf) = inf (bug for bug compatible with C99!?)
  78. *
  79. */
  80. #include "libm.h"
  81. #include "libc.h"
  82. static const double
  83. pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
  84. a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
  85. a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
  86. a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
  87. a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
  88. a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
  89. a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
  90. a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
  91. a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
  92. a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
  93. a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
  94. a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
  95. a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
  96. tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
  97. tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
  98. /* tt = -(tail of tf) */
  99. tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
  100. t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
  101. t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
  102. t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
  103. t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
  104. t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
  105. t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
  106. t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
  107. t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
  108. t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
  109. t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
  110. t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
  111. t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
  112. t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
  113. t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
  114. t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
  115. u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
  116. u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
  117. u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
  118. u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
  119. u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
  120. u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
  121. v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
  122. v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
  123. v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
  124. v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
  125. v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
  126. s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
  127. s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
  128. s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
  129. s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
  130. s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
  131. s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
  132. s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
  133. r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
  134. r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
  135. r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
  136. r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
  137. r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
  138. r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
  139. w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
  140. w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
  141. w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
  142. w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
  143. w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
  144. w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
  145. w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
  146. /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
  147. static double sin_pi(double x)
  148. {
  149. int n;
  150. /* spurious inexact if odd int */
  151. x = 2.0*(x*0.5 - floor(x*0.5)); /* x mod 2.0 */
  152. n = (int)(x*4.0);
  153. n = (n+1)/2;
  154. x -= n*0.5f;
  155. x *= pi;
  156. switch (n) {
  157. default: /* case 4: */
  158. case 0: return __sin(x, 0.0, 0);
  159. case 1: return __cos(x, 0.0);
  160. case 2: return __sin(-x, 0.0, 0);
  161. case 3: return -__cos(x, 0.0);
  162. }
  163. }
  164. double __lgamma_r(double x, int *signgamp)
  165. {
  166. union {double f; uint64_t i;} u = {x};
  167. double_t t,y,z,nadj,p,p1,p2,p3,q,r,w;
  168. uint32_t ix;
  169. int sign,i;
  170. /* purge off +-inf, NaN, +-0, tiny and negative arguments */
  171. *signgamp = 1;
  172. sign = u.i>>63;
  173. ix = u.i>>32 & 0x7fffffff;
  174. if (ix >= 0x7ff00000)
  175. return x*x;
  176. if (ix < (0x3ff-70)<<20) { /* |x|<2**-70, return -log(|x|) */
  177. if(sign) {
  178. x = -x;
  179. *signgamp = -1;
  180. }
  181. return -log(x);
  182. }
  183. if (sign) {
  184. x = -x;
  185. t = sin_pi(x);
  186. if (t == 0.0) /* -integer */
  187. return 1.0/(x-x);
  188. if (t > 0.0)
  189. *signgamp = -1;
  190. else
  191. t = -t;
  192. nadj = log(pi/(t*x));
  193. }
  194. /* purge off 1 and 2 */
  195. if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0)
  196. r = 0;
  197. /* for x < 2.0 */
  198. else if (ix < 0x40000000) {
  199. if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
  200. r = -log(x);
  201. if (ix >= 0x3FE76944) {
  202. y = 1.0 - x;
  203. i = 0;
  204. } else if (ix >= 0x3FCDA661) {
  205. y = x - (tc-1.0);
  206. i = 1;
  207. } else {
  208. y = x;
  209. i = 2;
  210. }
  211. } else {
  212. r = 0.0;
  213. if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */
  214. y = 2.0 - x;
  215. i = 0;
  216. } else if(ix >= 0x3FF3B4C4) { /* [1.23,1.73] */
  217. y = x - tc;
  218. i = 1;
  219. } else {
  220. y = x - 1.0;
  221. i = 2;
  222. }
  223. }
  224. switch (i) {
  225. case 0:
  226. z = y*y;
  227. p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
  228. p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
  229. p = y*p1+p2;
  230. r += (p-0.5*y);
  231. break;
  232. case 1:
  233. z = y*y;
  234. w = z*y;
  235. p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
  236. p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
  237. p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
  238. p = z*p1-(tt-w*(p2+y*p3));
  239. r += tf + p;
  240. break;
  241. case 2:
  242. p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
  243. p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
  244. r += -0.5*y + p1/p2;
  245. }
  246. } else if (ix < 0x40200000) { /* x < 8.0 */
  247. i = (int)x;
  248. y = x - (double)i;
  249. p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
  250. q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
  251. r = 0.5*y+p/q;
  252. z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
  253. switch (i) {
  254. case 7: z *= y + 6.0; /* FALLTHRU */
  255. case 6: z *= y + 5.0; /* FALLTHRU */
  256. case 5: z *= y + 4.0; /* FALLTHRU */
  257. case 4: z *= y + 3.0; /* FALLTHRU */
  258. case 3: z *= y + 2.0; /* FALLTHRU */
  259. r += log(z);
  260. break;
  261. }
  262. } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */
  263. t = log(x);
  264. z = 1.0/x;
  265. y = z*z;
  266. w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
  267. r = (x-0.5)*(t-1.0)+w;
  268. } else /* 2**58 <= x <= inf */
  269. r = x*(log(x)-1.0);
  270. if (sign)
  271. r = nadj - r;
  272. return r;
  273. }
  274. weak_alias(__lgamma_r, lgamma_r);