__tan.c 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. /* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
  2. /*
  3. * ====================================================
  4. * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
  5. *
  6. * Permission to use, copy, modify, and distribute this
  7. * software is freely granted, provided that this notice
  8. * is preserved.
  9. * ====================================================
  10. */
  11. /* __tan( x, y, k )
  12. * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
  13. * Input x is assumed to be bounded by ~pi/4 in magnitude.
  14. * Input y is the tail of x.
  15. * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
  16. *
  17. * Algorithm
  18. * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
  19. * 2. Callers must return tan(-0) = -0 without calling here since our
  20. * odd polynomial is not evaluated in a way that preserves -0.
  21. * Callers may do the optimization tan(x) ~ x for tiny x.
  22. * 3. tan(x) is approximated by a odd polynomial of degree 27 on
  23. * [0,0.67434]
  24. * 3 27
  25. * tan(x) ~ x + T1*x + ... + T13*x
  26. * where
  27. *
  28. * |tan(x) 2 4 26 | -59.2
  29. * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
  30. * | x |
  31. *
  32. * Note: tan(x+y) = tan(x) + tan'(x)*y
  33. * ~ tan(x) + (1+x*x)*y
  34. * Therefore, for better accuracy in computing tan(x+y), let
  35. * 3 2 2 2 2
  36. * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
  37. * then
  38. * 3 2
  39. * tan(x+y) = x + (T1*x + (x *(r+y)+y))
  40. *
  41. * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
  42. * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
  43. * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
  44. */
  45. #include "libm.h"
  46. static const double T[] = {
  47. 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
  48. 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
  49. 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
  50. 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
  51. 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
  52. 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
  53. 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
  54. 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
  55. 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
  56. 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
  57. 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
  58. -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
  59. 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
  60. },
  61. pio4 = 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
  62. pio4lo = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
  63. double __tan(double x, double y, int iy)
  64. {
  65. double z, r, v, w, s, sign;
  66. int32_t ix, hx;
  67. GET_HIGH_WORD(hx,x);
  68. ix = hx & 0x7fffffff; /* high word of |x| */
  69. if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
  70. if (hx < 0) {
  71. x = -x;
  72. y = -y;
  73. }
  74. z = pio4 - x;
  75. w = pio4lo - y;
  76. x = z + w;
  77. y = 0.0;
  78. }
  79. z = x * x;
  80. w = z * z;
  81. /*
  82. * Break x^5*(T[1]+x^2*T[2]+...) into
  83. * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
  84. * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
  85. */
  86. r = T[1] + w*(T[3] + w*(T[5] + w*(T[7] + w*(T[9] + w*T[11]))));
  87. v = z*(T[2] + w*(T[4] + w*(T[6] + w*(T[8] + w*(T[10] + w*T[12])))));
  88. s = z * x;
  89. r = y + z * (s * (r + v) + y);
  90. r += T[0] * s;
  91. w = x + r;
  92. if (ix >= 0x3FE59428) {
  93. v = iy;
  94. sign = 1 - ((hx >> 30) & 2);
  95. return sign * (v - 2.0 * (x - (w * w / (w + v) - r)));
  96. }
  97. if (iy == 1)
  98. return w;
  99. else {
  100. /*
  101. * if allow error up to 2 ulp, simply return
  102. * -1.0 / (x+r) here
  103. */
  104. /* compute -1.0 / (x+r) accurately */
  105. double a, t;
  106. z = w;
  107. SET_LOW_WORD(z,0);
  108. v = r - (z - x); /* z+v = r+x */
  109. t = a = -1.0 / w; /* a = -1.0/w */
  110. SET_LOW_WORD(t,0);
  111. s = 1.0 + t * z;
  112. return t + a * (s + t * v);
  113. }
  114. }