tan.c 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. /* origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /* tan(x)
  13. * Return tangent function of x.
  14. *
  15. * kernel function:
  16. * __tan ... tangent function on [-pi/4,pi/4]
  17. * __rem_pio2 ... argument reduction routine
  18. *
  19. * Method.
  20. * Let S,C and T denote the sin, cos and tan respectively on
  21. * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
  22. * in [-pi/4 , +pi/4], and let n = k mod 4.
  23. * We have
  24. *
  25. * n sin(x) cos(x) tan(x)
  26. * ----------------------------------------------------------
  27. * 0 S C T
  28. * 1 C -S -1/T
  29. * 2 -S -C T
  30. * 3 -C S -1/T
  31. * ----------------------------------------------------------
  32. *
  33. * Special cases:
  34. * Let trig be any of sin, cos, or tan.
  35. * trig(+-INF) is NaN, with signals;
  36. * trig(NaN) is that NaN;
  37. *
  38. * Accuracy:
  39. * TRIG(x) returns trig(x) nearly rounded
  40. */
  41. #include "libm.h"
  42. double tan(double x)
  43. {
  44. double y[2], z = 0.0;
  45. int32_t n, ix;
  46. /* High word of x. */
  47. GET_HIGH_WORD(ix, x);
  48. /* |x| ~< pi/4 */
  49. ix &= 0x7fffffff;
  50. if (ix <= 0x3fe921fb) {
  51. if (ix < 0x3e400000) /* x < 2**-27 */
  52. /* raise inexact if x != 0 */
  53. if ((int)x == 0)
  54. return x;
  55. return __tan(x, z, 1);
  56. }
  57. /* tan(Inf or NaN) is NaN */
  58. if (ix >= 0x7ff00000)
  59. return x - x;
  60. /* argument reduction needed */
  61. n = __rem_pio2(x, y);
  62. return __tan(y[0], y[1], 1 - ((n&1)<<1)); /* n even: 1, n odd: -1 */
  63. }