__tandf.c 1.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. /* origin: FreeBSD /usr/src/lib/msun/src/k_tanf.c */
  2. /*
  3. * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
  4. * Optimized by Bruce D. Evans.
  5. */
  6. /*
  7. * ====================================================
  8. * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
  9. *
  10. * Permission to use, copy, modify, and distribute this
  11. * software is freely granted, provided that this notice
  12. * is preserved.
  13. * ====================================================
  14. */
  15. #include "libm.h"
  16. /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
  17. static const double T[] = {
  18. 0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
  19. 0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
  20. 0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
  21. 0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
  22. 0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
  23. 0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
  24. };
  25. float __tandf(double x, int iy)
  26. {
  27. double z,r,w,s,t,u;
  28. z = x*x;
  29. /*
  30. * Split up the polynomial into small independent terms to give
  31. * opportunities for parallel evaluation. The chosen splitting is
  32. * micro-optimized for Athlons (XP, X64). It costs 2 multiplications
  33. * relative to Horner's method on sequential machines.
  34. *
  35. * We add the small terms from lowest degree up for efficiency on
  36. * non-sequential machines (the lowest degree terms tend to be ready
  37. * earlier). Apart from this, we don't care about order of
  38. * operations, and don't need to to care since we have precision to
  39. * spare. However, the chosen splitting is good for accuracy too,
  40. * and would give results as accurate as Horner's method if the
  41. * small terms were added from highest degree down.
  42. */
  43. r = T[4] + z*T[5];
  44. t = T[2] + z*T[3];
  45. w = z*z;
  46. s = z*x;
  47. u = T[0] + z*T[1];
  48. r = (x + s*u) + (s*w)*(t + w*r);
  49. if(iy==1) return r;
  50. else return -1.0/r;
  51. }