cos.c 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. /* origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /* cos(x)
  13. * Return cosine function of x.
  14. *
  15. * kernel function:
  16. * __sin ... sine function on [-pi/4,pi/4]
  17. * __cos ... cosine function on [-pi/4,pi/4]
  18. * __rem_pio2 ... argument reduction routine
  19. *
  20. * Method.
  21. * Let S,C and T denote the sin, cos and tan respectively on
  22. * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
  23. * in [-pi/4 , +pi/4], and let n = k mod 4.
  24. * We have
  25. *
  26. * n sin(x) cos(x) tan(x)
  27. * ----------------------------------------------------------
  28. * 0 S C T
  29. * 1 C -S -1/T
  30. * 2 -S -C T
  31. * 3 -C S -1/T
  32. * ----------------------------------------------------------
  33. *
  34. * Special cases:
  35. * Let trig be any of sin, cos, or tan.
  36. * trig(+-INF) is NaN, with signals;
  37. * trig(NaN) is that NaN;
  38. *
  39. * Accuracy:
  40. * TRIG(x) returns trig(x) nearly rounded
  41. */
  42. #include "libm.h"
  43. double cos(double x)
  44. {
  45. double y[2],z=0.0;
  46. int32_t n, ix;
  47. GET_HIGH_WORD(ix, x);
  48. /* |x| ~< pi/4 */
  49. ix &= 0x7fffffff;
  50. if (ix <= 0x3fe921fb) {
  51. if (ix < 0x3e46a09e) /* if x < 2**-27 * sqrt(2) */
  52. /* raise inexact if x != 0 */
  53. if ((int)x == 0)
  54. return 1.0;
  55. return __cos(x, z);
  56. }
  57. /* cos(Inf or NaN) is NaN */
  58. if (ix >= 0x7ff00000)
  59. return x-x;
  60. /* argument reduction needed */
  61. n = __rem_pio2(x, y);
  62. switch (n&3) {
  63. case 0: return __cos(y[0], y[1]);
  64. case 1: return -__sin(y[0], y[1], 1);
  65. case 2: return -__cos(y[0], y[1]);
  66. default:
  67. return __sin(y[0], y[1], 1);
  68. }
  69. }