log10l.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186
  1. /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_log10l.c */
  2. /*
  3. * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
  4. *
  5. * Permission to use, copy, modify, and distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. /*
  18. * Common logarithm, long double precision
  19. *
  20. *
  21. * SYNOPSIS:
  22. *
  23. * long double x, y, log10l();
  24. *
  25. * y = log10l( x );
  26. *
  27. *
  28. * DESCRIPTION:
  29. *
  30. * Returns the base 10 logarithm of x.
  31. *
  32. * The argument is separated into its exponent and fractional
  33. * parts. If the exponent is between -1 and +1, the logarithm
  34. * of the fraction is approximated by
  35. *
  36. * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
  37. *
  38. * Otherwise, setting z = 2(x-1)/x+1),
  39. *
  40. * log(x) = z + z**3 P(z)/Q(z).
  41. *
  42. *
  43. * ACCURACY:
  44. *
  45. * Relative error:
  46. * arithmetic domain # trials peak rms
  47. * IEEE 0.5, 2.0 30000 9.0e-20 2.6e-20
  48. * IEEE exp(+-10000) 30000 6.0e-20 2.3e-20
  49. *
  50. * In the tests over the interval exp(+-10000), the logarithms
  51. * of the random arguments were uniformly distributed over
  52. * [-10000, +10000].
  53. *
  54. * ERROR MESSAGES:
  55. *
  56. * log singularity: x = 0; returns MINLOG
  57. * log domain: x < 0; returns MINLOG
  58. */
  59. #include "libm.h"
  60. #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
  61. long double log10l(long double x)
  62. {
  63. return log10(x);
  64. }
  65. #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
  66. /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
  67. * 1/sqrt(2) <= x < sqrt(2)
  68. * Theoretical peak relative error = 6.2e-22
  69. */
  70. static const long double P[] = {
  71. 4.9962495940332550844739E-1L,
  72. 1.0767376367209449010438E1L,
  73. 7.7671073698359539859595E1L,
  74. 2.5620629828144409632571E2L,
  75. 4.2401812743503691187826E2L,
  76. 3.4258224542413922935104E2L,
  77. 1.0747524399916215149070E2L,
  78. };
  79. static const long double Q[] = {
  80. /* 1.0000000000000000000000E0,*/
  81. 2.3479774160285863271658E1L,
  82. 1.9444210022760132894510E2L,
  83. 7.7952888181207260646090E2L,
  84. 1.6911722418503949084863E3L,
  85. 2.0307734695595183428202E3L,
  86. 1.2695660352705325274404E3L,
  87. 3.2242573199748645407652E2L,
  88. };
  89. /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
  90. * where z = 2(x-1)/(x+1)
  91. * 1/sqrt(2) <= x < sqrt(2)
  92. * Theoretical peak relative error = 6.16e-22
  93. */
  94. static const long double R[4] = {
  95. 1.9757429581415468984296E-3L,
  96. -7.1990767473014147232598E-1L,
  97. 1.0777257190312272158094E1L,
  98. -3.5717684488096787370998E1L,
  99. };
  100. static const long double S[4] = {
  101. /* 1.00000000000000000000E0L,*/
  102. -2.6201045551331104417768E1L,
  103. 1.9361891836232102174846E2L,
  104. -4.2861221385716144629696E2L,
  105. };
  106. /* log10(2) */
  107. #define L102A 0.3125L
  108. #define L102B -1.1470004336018804786261e-2L
  109. /* log10(e) */
  110. #define L10EA 0.5L
  111. #define L10EB -6.5705518096748172348871e-2L
  112. #define SQRTH 0.70710678118654752440L
  113. long double log10l(long double x)
  114. {
  115. long double y;
  116. volatile long double z;
  117. int e;
  118. if (isnan(x))
  119. return x;
  120. if(x <= 0.0) {
  121. if(x == 0.0)
  122. return -1.0 / (x - x);
  123. return (x - x) / (x - x);
  124. }
  125. if (x == INFINITY)
  126. return INFINITY;
  127. /* separate mantissa from exponent */
  128. /* Note, frexp is used so that denormal numbers
  129. * will be handled properly.
  130. */
  131. x = frexpl(x, &e);
  132. /* logarithm using log(x) = z + z**3 P(z)/Q(z),
  133. * where z = 2(x-1)/x+1)
  134. */
  135. if (e > 2 || e < -2) {
  136. if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
  137. e -= 1;
  138. z = x - 0.5;
  139. y = 0.5 * z + 0.5;
  140. } else { /* 2 (x-1)/(x+1) */
  141. z = x - 0.5;
  142. z -= 0.5;
  143. y = 0.5 * x + 0.5;
  144. }
  145. x = z / y;
  146. z = x*x;
  147. y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
  148. goto done;
  149. }
  150. /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
  151. if (x < SQRTH) {
  152. e -= 1;
  153. x = 2.0*x - 1.0;
  154. } else {
  155. x = x - 1.0;
  156. }
  157. z = x*x;
  158. y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
  159. y = y - 0.5*z;
  160. done:
  161. /* Multiply log of fraction by log10(e)
  162. * and base 2 exponent by log10(2).
  163. *
  164. * ***CAUTION***
  165. *
  166. * This sequence of operations is critical and it may
  167. * be horribly defeated by some compiler optimizers.
  168. */
  169. z = y * (L10EB);
  170. z += x * (L10EB);
  171. z += e * (L102B);
  172. z += y * (L10EA);
  173. z += x * (L10EA);
  174. z += e * (L102A);
  175. return z;
  176. }
  177. #endif