123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- /* origin: FreeBSD /usr/src/lib/msun/ld80/k_cosl.c */
- /* origin: FreeBSD /usr/src/lib/msun/ld128/k_cosl.c */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- #include "libm.h"
- #if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
- #if LDBL_MANT_DIG == 64
- /*
- * ld80 version of __cos.c. See __cos.c for most comments.
- */
- /*
- * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
- * |cos(x) - c(x)| < 2**-75.1
- *
- * The coefficients of c(x) were generated by a pari-gp script using
- * a Remez algorithm that searches for the best higher coefficients
- * after rounding leading coefficients to a specified precision.
- *
- * Simpler methods like Chebyshev or basic Remez barely suffice for
- * cos() in 64-bit precision, because we want the coefficient of x^2
- * to be precisely -0.5 so that multiplying by it is exact, and plain
- * rounding of the coefficients of a good polynomial approximation only
- * gives this up to about 64-bit precision. Plain rounding also gives
- * a mediocre approximation for the coefficient of x^4, but a rounding
- * error of 0.5 ulps for this coefficient would only contribute ~0.01
- * ulps to the final error, so this is unimportant. Rounding errors in
- * higher coefficients are even less important.
- *
- * In fact, coefficients above the x^4 one only need to have 53-bit
- * precision, and this is more efficient. We get this optimization
- * almost for free from the complications needed to search for the best
- * higher coefficients.
- */
- static const long double
- C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */
- static const double
- C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */
- C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */
- C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */
- C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */
- C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */
- C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */
- #define POLY(z) (z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7)))))))
- #elif LDBL_MANT_DIG == 113
- /*
- * ld128 version of __cos.c. See __cos.c for most comments.
- */
- /*
- * Domain [-0.7854, 0.7854], range ~[-1.80e-37, 1.79e-37]:
- * |cos(x) - c(x))| < 2**-122.0
- *
- * 113-bit precision requires more care than 64-bit precision, since
- * simple methods give a minimax polynomial with coefficient for x^2
- * that is 1 ulp below 0.5, but we want it to be precisely 0.5. See
- * above for more details.
- */
- static const long double
- C1 = 0.04166666666666666666666666666666658424671L,
- C2 = -0.001388888888888888888888888888863490893732L,
- C3 = 0.00002480158730158730158730158600795304914210L,
- C4 = -0.2755731922398589065255474947078934284324e-6L,
- C5 = 0.2087675698786809897659225313136400793948e-8L,
- C6 = -0.1147074559772972315817149986812031204775e-10L,
- C7 = 0.4779477332386808976875457937252120293400e-13L;
- static const double
- C8 = -0.1561920696721507929516718307820958119868e-15,
- C9 = 0.4110317413744594971475941557607804508039e-18,
- C10 = -0.8896592467191938803288521958313920156409e-21,
- C11 = 0.1601061435794535138244346256065192782581e-23;
- #define POLY(z) (z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*(C7+ \
- z*(C8+z*(C9+z*(C10+z*C11)))))))))))
- #endif
- long double __cosl(long double x, long double y)
- {
- long double hz,z,r,w;
- z = x*x;
- r = POLY(z);
- hz = 0.5*z;
- w = 1.0-hz;
- return w + (((1.0-w)-hz) + (z*r-x*y));
- }
- #endif
|