log10.c 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. /* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /*
  13. * Return the base 10 logarithm of x. See log.c for most comments.
  14. *
  15. * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
  16. * as in log.c, then combine and scale in extra precision:
  17. * log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
  18. */
  19. #include <math.h>
  20. #include <stdint.h>
  21. static const double
  22. ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
  23. ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */
  24. log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
  25. log10_2lo = 3.69423907715893078616e-13, /* 0x3D59FEF3, 0x11F12B36 */
  26. Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  27. Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  28. Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  29. Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  30. Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  31. Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  32. Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  33. double log10(double x)
  34. {
  35. union {double f; uint64_t i;} u = {x};
  36. double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo;
  37. uint32_t hx;
  38. int k;
  39. hx = u.i>>32;
  40. k = 0;
  41. if (hx < 0x00100000 || hx>>31) {
  42. if (u.i<<1 == 0)
  43. return -1/(x*x); /* log(+-0)=-inf */
  44. if (hx>>31)
  45. return (x-x)/0.0; /* log(-#) = NaN */
  46. /* subnormal number, scale x up */
  47. k -= 54;
  48. x *= 0x1p54;
  49. u.f = x;
  50. hx = u.i>>32;
  51. } else if (hx >= 0x7ff00000) {
  52. return x;
  53. } else if (hx == 0x3ff00000 && u.i<<32 == 0)
  54. return 0;
  55. /* reduce x into [sqrt(2)/2, sqrt(2)] */
  56. hx += 0x3ff00000 - 0x3fe6a09e;
  57. k += (int)(hx>>20) - 0x3ff;
  58. hx = (hx&0x000fffff) + 0x3fe6a09e;
  59. u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
  60. x = u.f;
  61. f = x - 1.0;
  62. hfsq = 0.5*f*f;
  63. s = f/(2.0+f);
  64. z = s*s;
  65. w = z*z;
  66. t1 = w*(Lg2+w*(Lg4+w*Lg6));
  67. t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  68. R = t2 + t1;
  69. /* See log2.c for details. */
  70. /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
  71. hi = f - hfsq;
  72. u.f = hi;
  73. u.i &= (uint64_t)-1<<32;
  74. hi = u.f;
  75. lo = f - hi - hfsq + s*(hfsq+R);
  76. /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
  77. val_hi = hi*ivln10hi;
  78. dk = k;
  79. y = dk*log10_2hi;
  80. val_lo = dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
  81. /*
  82. * Extra precision in for adding y is not strictly needed
  83. * since there is no very large cancellation near x = sqrt(2) or
  84. * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
  85. * with some parallelism and it reduces the error for many args.
  86. */
  87. w = y + val_hi;
  88. val_lo += (y - w) + val_hi;
  89. val_hi = w;
  90. return val_lo + val_hi;
  91. }