log2.c 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. /* origin: FreeBSD /usr/src/lib/msun/src/e_log2.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /*
  13. * Return the base 2 logarithm of x. See log.c for most comments.
  14. *
  15. * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
  16. * as in log.c, then combine and scale in extra precision:
  17. * log2(x) = (f - f*f/2 + r)/log(2) + k
  18. */
  19. #include <math.h>
  20. #include <stdint.h>
  21. static const double
  22. ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
  23. ivln2lo = 1.67517131648865118353e-10, /* 0x3de705fc, 0x2eefa200 */
  24. Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  25. Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  26. Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  27. Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  28. Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  29. Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  30. Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  31. double log2(double x)
  32. {
  33. union {double f; uint64_t i;} u = {x};
  34. double_t hfsq,f,s,z,R,w,t1,t2,y,hi,lo,val_hi,val_lo;
  35. uint32_t hx;
  36. int k;
  37. hx = u.i>>32;
  38. k = 0;
  39. if (hx < 0x00100000 || hx>>31) {
  40. if (u.i<<1 == 0)
  41. return -1/(x*x); /* log(+-0)=-inf */
  42. if (hx>>31)
  43. return (x-x)/0.0; /* log(-#) = NaN */
  44. /* subnormal number, scale x up */
  45. k -= 54;
  46. x *= 0x1p54;
  47. u.f = x;
  48. hx = u.i>>32;
  49. } else if (hx >= 0x7ff00000) {
  50. return x;
  51. } else if (hx == 0x3ff00000 && u.i<<32 == 0)
  52. return 0;
  53. /* reduce x into [sqrt(2)/2, sqrt(2)] */
  54. hx += 0x3ff00000 - 0x3fe6a09e;
  55. k += (int)(hx>>20) - 0x3ff;
  56. hx = (hx&0x000fffff) + 0x3fe6a09e;
  57. u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
  58. x = u.f;
  59. f = x - 1.0;
  60. hfsq = 0.5*f*f;
  61. s = f/(2.0+f);
  62. z = s*s;
  63. w = z*z;
  64. t1 = w*(Lg2+w*(Lg4+w*Lg6));
  65. t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  66. R = t2 + t1;
  67. /*
  68. * f-hfsq must (for args near 1) be evaluated in extra precision
  69. * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
  70. * This is fairly efficient since f-hfsq only depends on f, so can
  71. * be evaluated in parallel with R. Not combining hfsq with R also
  72. * keeps R small (though not as small as a true `lo' term would be),
  73. * so that extra precision is not needed for terms involving R.
  74. *
  75. * Compiler bugs involving extra precision used to break Dekker's
  76. * theorem for spitting f-hfsq as hi+lo, unless double_t was used
  77. * or the multi-precision calculations were avoided when double_t
  78. * has extra precision. These problems are now automatically
  79. * avoided as a side effect of the optimization of combining the
  80. * Dekker splitting step with the clear-low-bits step.
  81. *
  82. * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
  83. * precision to avoid a very large cancellation when x is very near
  84. * these values. Unlike the above cancellations, this problem is
  85. * specific to base 2. It is strange that adding +-1 is so much
  86. * harder than adding +-ln2 or +-log10_2.
  87. *
  88. * This uses Dekker's theorem to normalize y+val_hi, so the
  89. * compiler bugs are back in some configurations, sigh. And I
  90. * don't want to used double_t to avoid them, since that gives a
  91. * pessimization and the support for avoiding the pessimization
  92. * is not yet available.
  93. *
  94. * The multi-precision calculations for the multiplications are
  95. * routine.
  96. */
  97. /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
  98. hi = f - hfsq;
  99. u.f = hi;
  100. u.i &= (uint64_t)-1<<32;
  101. hi = u.f;
  102. lo = f - hi - hfsq + s*(hfsq+R);
  103. val_hi = hi*ivln2hi;
  104. val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
  105. /* spadd(val_hi, val_lo, y), except for not using double_t: */
  106. y = k;
  107. w = y + val_hi;
  108. val_lo += (y - w) + val_hi;
  109. val_hi = w;
  110. return val_lo + val_hi;
  111. }