12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- /* origin: FreeBSD /usr/src/lib/msun/src/k_log.h */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- /*
- * __log1p(f):
- * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
- *
- * The following describes the overall strategy for computing
- * logarithms in base e. The argument reduction and adding the final
- * term of the polynomial are done by the caller for increased accuracy
- * when different bases are used.
- *
- * Method :
- * 1. Argument Reduction: find k and f such that
- * x = 2^k * (1+f),
- * where sqrt(2)/2 < 1+f < sqrt(2) .
- *
- * 2. Approximation of log(1+f).
- * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- * = 2s + s*R
- * We use a special Reme algorithm on [0,0.1716] to generate
- * a polynomial of degree 14 to approximate R The maximum error
- * of this polynomial approximation is bounded by 2**-58.45. In
- * other words,
- * 2 4 6 8 10 12 14
- * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
- * (the values of Lg1 to Lg7 are listed in the program)
- * and
- * | 2 14 | -58.45
- * | Lg1*s +...+Lg7*s - R(z) | <= 2
- * | |
- * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- * In order to guarantee error in log below 1ulp, we compute log
- * by
- * log(1+f) = f - s*(f - R) (if f is not too large)
- * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
- *
- * 3. Finally, log(x) = k*ln2 + log(1+f).
- * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- * Here ln2 is split into two floating point number:
- * ln2_hi + ln2_lo,
- * where n*ln2_hi is always exact for |n| < 2000.
- *
- * Special cases:
- * log(x) is NaN with signal if x < 0 (including -INF) ;
- * log(+INF) is +INF; log(0) is -INF with signal;
- * log(NaN) is that NaN with no signal.
- *
- * Accuracy:
- * according to an error analysis, the error is always less than
- * 1 ulp (unit in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
- static const double
- Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
- Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
- Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
- Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
- Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
- Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
- Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
- /*
- * We always inline __log1p(), since doing so produces a
- * substantial performance improvement (~40% on amd64).
- */
- static inline double __log1p(double f)
- {
- double hfsq,s,z,R,w,t1,t2;
- s = f/(2.0+f);
- z = s*s;
- w = z*z;
- t1= w*(Lg2+w*(Lg4+w*Lg6));
- t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
- R = t2+t1;
- hfsq = 0.5*f*f;
- return s*(hfsq+R);
- }
|