__log1p.h 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. /* origin: FreeBSD /usr/src/lib/msun/src/k_log.h */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /*
  13. * __log1p(f):
  14. * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
  15. *
  16. * The following describes the overall strategy for computing
  17. * logarithms in base e. The argument reduction and adding the final
  18. * term of the polynomial are done by the caller for increased accuracy
  19. * when different bases are used.
  20. *
  21. * Method :
  22. * 1. Argument Reduction: find k and f such that
  23. * x = 2^k * (1+f),
  24. * where sqrt(2)/2 < 1+f < sqrt(2) .
  25. *
  26. * 2. Approximation of log(1+f).
  27. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  28. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  29. * = 2s + s*R
  30. * We use a special Reme algorithm on [0,0.1716] to generate
  31. * a polynomial of degree 14 to approximate R The maximum error
  32. * of this polynomial approximation is bounded by 2**-58.45. In
  33. * other words,
  34. * 2 4 6 8 10 12 14
  35. * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
  36. * (the values of Lg1 to Lg7 are listed in the program)
  37. * and
  38. * | 2 14 | -58.45
  39. * | Lg1*s +...+Lg7*s - R(z) | <= 2
  40. * | |
  41. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  42. * In order to guarantee error in log below 1ulp, we compute log
  43. * by
  44. * log(1+f) = f - s*(f - R) (if f is not too large)
  45. * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
  46. *
  47. * 3. Finally, log(x) = k*ln2 + log(1+f).
  48. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  49. * Here ln2 is split into two floating point number:
  50. * ln2_hi + ln2_lo,
  51. * where n*ln2_hi is always exact for |n| < 2000.
  52. *
  53. * Special cases:
  54. * log(x) is NaN with signal if x < 0 (including -INF) ;
  55. * log(+INF) is +INF; log(0) is -INF with signal;
  56. * log(NaN) is that NaN with no signal.
  57. *
  58. * Accuracy:
  59. * according to an error analysis, the error is always less than
  60. * 1 ulp (unit in the last place).
  61. *
  62. * Constants:
  63. * The hexadecimal values are the intended ones for the following
  64. * constants. The decimal values may be used, provided that the
  65. * compiler will convert from decimal to binary accurately enough
  66. * to produce the hexadecimal values shown.
  67. */
  68. static const double
  69. Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  70. Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  71. Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  72. Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  73. Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  74. Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  75. Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  76. /*
  77. * We always inline __log1p(), since doing so produces a
  78. * substantial performance improvement (~40% on amd64).
  79. */
  80. static inline double __log1p(double f)
  81. {
  82. double hfsq,s,z,R,w,t1,t2;
  83. s = f/(2.0+f);
  84. z = s*s;
  85. w = z*z;
  86. t1= w*(Lg2+w*(Lg4+w*Lg6));
  87. t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  88. R = t2+t1;
  89. hfsq = 0.5*f*f;
  90. return s*(hfsq+R);
  91. }