123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412 |
- #include <fenv.h>
- #include "libm.h"
- #if LDBL_MANT_DIG==64 && LDBL_MAX_EXP==16384
- union ld80 {
- long double x;
- struct {
- uint64_t m;
- uint16_t e : 15;
- uint16_t s : 1;
- uint16_t pad;
- } bits;
- };
- /* exact add, assumes exponent_x >= exponent_y */
- static void add(long double *hi, long double *lo, long double x, long double y)
- {
- long double r;
- r = x + y;
- *hi = r;
- r -= x;
- *lo = y - r;
- }
- /* exact mul, assumes no over/underflow */
- static void mul(long double *hi, long double *lo, long double x, long double y)
- {
- static const long double c = 1.0 + 0x1p32L;
- long double cx, xh, xl, cy, yh, yl;
- cx = c*x;
- xh = (x - cx) + cx;
- xl = x - xh;
- cy = c*y;
- yh = (y - cy) + cy;
- yl = y - yh;
- *hi = x*y;
- *lo = (xh*yh - *hi) + xh*yl + xl*yh + xl*yl;
- }
- /*
- assume (long double)(hi+lo) == hi
- return an adjusted hi so that rounding it to double is correct
- */
- static long double adjust(long double hi, long double lo)
- {
- union ld80 uhi, ulo;
- if (lo == 0)
- return hi;
- uhi.x = hi;
- if (uhi.bits.m & 0x3ff)
- return hi;
- ulo.x = lo;
- if (uhi.bits.s == ulo.bits.s)
- uhi.bits.m++;
- else
- uhi.bits.m--;
- return uhi.x;
- }
- static long double dadd(long double x, long double y)
- {
- add(&x, &y, x, y);
- return adjust(x, y);
- }
- static long double dmul(long double x, long double y)
- {
- mul(&x, &y, x, y);
- return adjust(x, y);
- }
- static int getexp(long double x)
- {
- union ld80 u;
- u.x = x;
- return u.bits.e;
- }
- double fma(double x, double y, double z)
- {
- long double hi, lo1, lo2, xy;
- int round, ez, exy;
- /* handle +-inf,nan */
- if (!isfinite(x) || !isfinite(y))
- return x*y + z;
- if (!isfinite(z))
- return z;
- /* handle +-0 */
- if (x == 0.0 || y == 0.0)
- return x*y + z;
- round = fegetround();
- if (z == 0.0) {
- if (round == FE_TONEAREST)
- return dmul(x, y);
- return x*y;
- }
- /* exact mul and add require nearest rounding */
- /* spurious inexact exceptions may be raised */
- fesetround(FE_TONEAREST);
- mul(&xy, &lo1, x, y);
- exy = getexp(xy);
- ez = getexp(z);
- if (ez > exy) {
- add(&hi, &lo2, z, xy);
- } else if (ez > exy - 12) {
- add(&hi, &lo2, xy, z);
- if (hi == 0) {
- fesetround(round);
- /* make sure that the sign of 0 is correct */
- return (xy + z) + lo1;
- }
- } else {
- /*
- ez <= exy - 12
- the 12 extra bits (1guard, 11round+sticky) are needed so with
- lo = dadd(lo1, lo2)
- elo <= ehi - 11, and we use the last 10 bits in adjust so
- dadd(hi, lo)
- gives correct result when rounded to double
- */
- hi = xy;
- lo2 = z;
- }
- fesetround(round);
- if (round == FE_TONEAREST)
- return dadd(hi, dadd(lo1, lo2));
- return hi + (lo1 + lo2);
- }
- #else
- /* origin: FreeBSD /usr/src/lib/msun/src/s_fma.c */
- /*-
- * Copyright (c) 2005-2011 David Schultz <[email protected]>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- /*
- * A struct dd represents a floating-point number with twice the precision
- * of a double. We maintain the invariant that "hi" stores the 53 high-order
- * bits of the result.
- */
- struct dd {
- double hi;
- double lo;
- };
- /*
- * Compute a+b exactly, returning the exact result in a struct dd. We assume
- * that both a and b are finite, but make no assumptions about their relative
- * magnitudes.
- */
- static inline struct dd dd_add(double a, double b)
- {
- struct dd ret;
- double s;
- ret.hi = a + b;
- s = ret.hi - a;
- ret.lo = (a - (ret.hi - s)) + (b - s);
- return (ret);
- }
- /*
- * Compute a+b, with a small tweak: The least significant bit of the
- * result is adjusted into a sticky bit summarizing all the bits that
- * were lost to rounding. This adjustment negates the effects of double
- * rounding when the result is added to another number with a higher
- * exponent. For an explanation of round and sticky bits, see any reference
- * on FPU design, e.g.,
- *
- * J. Coonen. An Implementation Guide to a Proposed Standard for
- * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
- */
- static inline double add_adjusted(double a, double b)
- {
- struct dd sum;
- uint64_t hibits, lobits;
- sum = dd_add(a, b);
- if (sum.lo != 0) {
- EXTRACT_WORD64(hibits, sum.hi);
- if ((hibits & 1) == 0) {
- /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
- EXTRACT_WORD64(lobits, sum.lo);
- hibits += 1 - ((hibits ^ lobits) >> 62);
- INSERT_WORD64(sum.hi, hibits);
- }
- }
- return (sum.hi);
- }
- /*
- * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
- * that the result will be subnormal, and care is taken to ensure that
- * double rounding does not occur.
- */
- static inline double add_and_denormalize(double a, double b, int scale)
- {
- struct dd sum;
- uint64_t hibits, lobits;
- int bits_lost;
- sum = dd_add(a, b);
- /*
- * If we are losing at least two bits of accuracy to denormalization,
- * then the first lost bit becomes a round bit, and we adjust the
- * lowest bit of sum.hi to make it a sticky bit summarizing all the
- * bits in sum.lo. With the sticky bit adjusted, the hardware will
- * break any ties in the correct direction.
- *
- * If we are losing only one bit to denormalization, however, we must
- * break the ties manually.
- */
- if (sum.lo != 0) {
- EXTRACT_WORD64(hibits, sum.hi);
- bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
- if (bits_lost != 1 ^ (int)(hibits & 1)) {
- /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
- EXTRACT_WORD64(lobits, sum.lo);
- hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
- INSERT_WORD64(sum.hi, hibits);
- }
- }
- return scalbn(sum.hi, scale);
- }
- /*
- * Compute a*b exactly, returning the exact result in a struct dd. We assume
- * that both a and b are normalized, so no underflow or overflow will occur.
- * The current rounding mode must be round-to-nearest.
- */
- static inline struct dd dd_mul(double a, double b)
- {
- static const double split = 0x1p27 + 1.0;
- struct dd ret;
- double ha, hb, la, lb, p, q;
- p = a * split;
- ha = a - p;
- ha += p;
- la = a - ha;
- p = b * split;
- hb = b - p;
- hb += p;
- lb = b - hb;
- p = ha * hb;
- q = ha * lb + la * hb;
- ret.hi = p + q;
- ret.lo = p - ret.hi + q + la * lb;
- return (ret);
- }
- /*
- * Fused multiply-add: Compute x * y + z with a single rounding error.
- *
- * We use scaling to avoid overflow/underflow, along with the
- * canonical precision-doubling technique adapted from:
- *
- * Dekker, T. A Floating-Point Technique for Extending the
- * Available Precision. Numer. Math. 18, 224-242 (1971).
- *
- * This algorithm is sensitive to the rounding precision. FPUs such
- * as the i387 must be set in double-precision mode if variables are
- * to be stored in FP registers in order to avoid incorrect results.
- * This is the default on FreeBSD, but not on many other systems.
- *
- * Hardware instructions should be used on architectures that support it,
- * since this implementation will likely be several times slower.
- */
- double fma(double x, double y, double z)
- {
- double xs, ys, zs, adj;
- struct dd xy, r;
- int oround;
- int ex, ey, ez;
- int spread;
- /*
- * Handle special cases. The order of operations and the particular
- * return values here are crucial in handling special cases involving
- * infinities, NaNs, overflows, and signed zeroes correctly.
- */
- if (!isfinite(x) || !isfinite(y))
- return (x * y + z);
- if (!isfinite(z))
- return (z);
- if (x == 0.0 || y == 0.0)
- return (x * y + z);
- if (z == 0.0)
- return (x * y);
- xs = frexp(x, &ex);
- ys = frexp(y, &ey);
- zs = frexp(z, &ez);
- oround = fegetround();
- spread = ex + ey - ez;
- /*
- * If x * y and z are many orders of magnitude apart, the scaling
- * will overflow, so we handle these cases specially. Rounding
- * modes other than FE_TONEAREST are painful.
- */
- if (spread < -DBL_MANT_DIG) {
- #ifdef FE_INEXACT
- feraiseexcept(FE_INEXACT);
- #endif
- #ifdef FE_UNDERFLOW
- if (!isnormal(z))
- feraiseexcept(FE_UNDERFLOW);
- #endif
- switch (oround) {
- default: /* FE_TONEAREST */
- return (z);
- #ifdef FE_TOWARDZERO
- case FE_TOWARDZERO:
- if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
- return (z);
- else
- return (nextafter(z, 0));
- #endif
- #ifdef FE_DOWNWARD
- case FE_DOWNWARD:
- if (x > 0.0 ^ y < 0.0)
- return (z);
- else
- return (nextafter(z, -INFINITY));
- #endif
- #ifdef FE_UPWARD
- case FE_UPWARD:
- if (x > 0.0 ^ y < 0.0)
- return (nextafter(z, INFINITY));
- else
- return (z);
- #endif
- }
- }
- if (spread <= DBL_MANT_DIG * 2)
- zs = scalbn(zs, -spread);
- else
- zs = copysign(DBL_MIN, zs);
- fesetround(FE_TONEAREST);
- /*
- * Basic approach for round-to-nearest:
- *
- * (xy.hi, xy.lo) = x * y (exact)
- * (r.hi, r.lo) = xy.hi + z (exact)
- * adj = xy.lo + r.lo (inexact; low bit is sticky)
- * result = r.hi + adj (correctly rounded)
- */
- xy = dd_mul(xs, ys);
- r = dd_add(xy.hi, zs);
- spread = ex + ey;
- if (r.hi == 0.0) {
- /*
- * When the addends cancel to 0, ensure that the result has
- * the correct sign.
- */
- fesetround(oround);
- volatile double vzs = zs; /* XXX gcc CSE bug workaround */
- return xy.hi + vzs + scalbn(xy.lo, spread);
- }
- if (oround != FE_TONEAREST) {
- /*
- * There is no need to worry about double rounding in directed
- * rounding modes.
- */
- fesetround(oround);
- adj = r.lo + xy.lo;
- return scalbn(r.hi + adj, spread);
- }
- adj = add_adjusted(r.lo, xy.lo);
- if (spread + ilogb(r.hi) > -1023)
- return scalbn(r.hi + adj, spread);
- else
- return add_and_denormalize(r.hi, adj, spread);
- }
- #endif
|