erff.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214
  1. /* origin: FreeBSD /usr/src/lib/msun/src/s_erff.c */
  2. /*
  3. * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
  4. */
  5. /*
  6. * ====================================================
  7. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  8. *
  9. * Developed at SunPro, a Sun Microsystems, Inc. business.
  10. * Permission to use, copy, modify, and distribute this
  11. * software is freely granted, provided that this notice
  12. * is preserved.
  13. * ====================================================
  14. */
  15. #include "libm.h"
  16. static const float
  17. tiny = 1e-30,
  18. /* c = (subfloat)0.84506291151 */
  19. erx = 8.4506291151e-01, /* 0x3f58560b */
  20. /*
  21. * Coefficients for approximation to erf on [0,0.84375]
  22. */
  23. efx = 1.2837916613e-01, /* 0x3e0375d4 */
  24. efx8 = 1.0270333290e+00, /* 0x3f8375d4 */
  25. pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
  26. pp1 = -3.2504209876e-01, /* 0xbea66beb */
  27. pp2 = -2.8481749818e-02, /* 0xbce9528f */
  28. pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
  29. pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
  30. qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
  31. qq2 = 6.5022252500e-02, /* 0x3d852a63 */
  32. qq3 = 5.0813062117e-03, /* 0x3ba68116 */
  33. qq4 = 1.3249473704e-04, /* 0x390aee49 */
  34. qq5 = -3.9602282413e-06, /* 0xb684e21a */
  35. /*
  36. * Coefficients for approximation to erf in [0.84375,1.25]
  37. */
  38. pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
  39. pa1 = 4.1485610604e-01, /* 0x3ed46805 */
  40. pa2 = -3.7220788002e-01, /* 0xbebe9208 */
  41. pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
  42. pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
  43. pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
  44. pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
  45. qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
  46. qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
  47. qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
  48. qa4 = 1.2617121637e-01, /* 0x3e013307 */
  49. qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
  50. qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
  51. /*
  52. * Coefficients for approximation to erfc in [1.25,1/0.35]
  53. */
  54. ra0 = -9.8649440333e-03, /* 0xbc21a093 */
  55. ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
  56. ra2 = -1.0558626175e+01, /* 0xc128f022 */
  57. ra3 = -6.2375331879e+01, /* 0xc2798057 */
  58. ra4 = -1.6239666748e+02, /* 0xc322658c */
  59. ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
  60. ra6 = -8.1287437439e+01, /* 0xc2a2932b */
  61. ra7 = -9.8143291473e+00, /* 0xc11d077e */
  62. sa1 = 1.9651271820e+01, /* 0x419d35ce */
  63. sa2 = 1.3765776062e+02, /* 0x4309a863 */
  64. sa3 = 4.3456588745e+02, /* 0x43d9486f */
  65. sa4 = 6.4538726807e+02, /* 0x442158c9 */
  66. sa5 = 4.2900814819e+02, /* 0x43d6810b */
  67. sa6 = 1.0863500214e+02, /* 0x42d9451f */
  68. sa7 = 6.5702495575e+00, /* 0x40d23f7c */
  69. sa8 = -6.0424413532e-02, /* 0xbd777f97 */
  70. /*
  71. * Coefficients for approximation to erfc in [1/.35,28]
  72. */
  73. rb0 = -9.8649431020e-03, /* 0xbc21a092 */
  74. rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
  75. rb2 = -1.7757955551e+01, /* 0xc18e104b */
  76. rb3 = -1.6063638306e+02, /* 0xc320a2ea */
  77. rb4 = -6.3756646729e+02, /* 0xc41f6441 */
  78. rb5 = -1.0250950928e+03, /* 0xc480230b */
  79. rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
  80. sb1 = 3.0338060379e+01, /* 0x41f2b459 */
  81. sb2 = 3.2579251099e+02, /* 0x43a2e571 */
  82. sb3 = 1.5367296143e+03, /* 0x44c01759 */
  83. sb4 = 3.1998581543e+03, /* 0x4547fdbb */
  84. sb5 = 2.5530502930e+03, /* 0x451f90ce */
  85. sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
  86. sb7 = -2.2440952301e+01; /* 0xc1b38712 */
  87. float erff(float x)
  88. {
  89. int32_t hx,ix,i;
  90. float R,S,P,Q,s,y,z,r;
  91. GET_FLOAT_WORD(hx, x);
  92. ix = hx & 0x7fffffff;
  93. if (ix >= 0x7f800000) {
  94. /* erf(nan)=nan, erf(+-inf)=+-1 */
  95. i = ((uint32_t)hx>>31)<<1;
  96. return (float)(1-i)+1.0f/x;
  97. }
  98. if (ix < 0x3f580000) { /* |x| < 0.84375 */
  99. if (ix < 0x31800000) { /* |x| < 2**-28 */
  100. if (ix < 0x04000000)
  101. /*avoid underflow */
  102. return 0.125f*(8.0f*x + efx8*x);
  103. return x + efx*x;
  104. }
  105. z = x*x;
  106. r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
  107. s = 1.0f+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
  108. y = r/s;
  109. return x + x*y;
  110. }
  111. if (ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
  112. s = fabsf(x)-1.0f;
  113. P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
  114. Q = 1.0f+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
  115. if (hx >= 0)
  116. return erx + P/Q;
  117. return -erx - P/Q;
  118. }
  119. if (ix >= 0x40c00000) { /* inf > |x| >= 6 */
  120. if (hx >= 0)
  121. return 1.0f - tiny;
  122. return tiny - 1.0f;
  123. }
  124. x = fabsf(x);
  125. s = 1.0f/(x*x);
  126. if (ix < 0x4036DB6E) { /* |x| < 1/0.35 */
  127. R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
  128. ra5+s*(ra6+s*ra7))))));
  129. S = 1.0f+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
  130. sa5+s*(sa6+s*(sa7+s*sa8)))))));
  131. } else { /* |x| >= 1/0.35 */
  132. R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
  133. rb5+s*rb6)))));
  134. S = 1.0f+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
  135. sb5+s*(sb6+s*sb7))))));
  136. }
  137. GET_FLOAT_WORD(ix, x);
  138. SET_FLOAT_WORD(z, ix&0xfffff000);
  139. r = expf(-z*z - 0.5625f) * expf((z-x)*(z+x) + R/S);
  140. if (hx >= 0)
  141. return 1.0f - r/x;
  142. return r/x - 1.0f;
  143. }
  144. float erfcf(float x)
  145. {
  146. int32_t hx,ix;
  147. float R,S,P,Q,s,y,z,r;
  148. GET_FLOAT_WORD(hx, x);
  149. ix = hx & 0x7fffffff;
  150. if (ix >= 0x7f800000) {
  151. /* erfc(nan)=nan, erfc(+-inf)=0,2 */
  152. return (float)(((uint32_t)hx>>31)<<1) + 1.0f/x;
  153. }
  154. if (ix < 0x3f580000) { /* |x| < 0.84375 */
  155. if (ix < 0x23800000) /* |x| < 2**-56 */
  156. return 1.0f - x;
  157. z = x*x;
  158. r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
  159. s = 1.0f+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
  160. y = r/s;
  161. if (hx < 0x3e800000) { /* x<1/4 */
  162. return 1.0f - (x+x*y);
  163. } else {
  164. r = x*y;
  165. r += (x-0.5f);
  166. return 0.5f - r ;
  167. }
  168. }
  169. if (ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
  170. s = fabsf(x)-1.0f;
  171. P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
  172. Q = 1.0f+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
  173. if(hx >= 0) {
  174. z = 1.0f - erx;
  175. return z - P/Q;
  176. } else {
  177. z = erx + P/Q;
  178. return 1.0f + z;
  179. }
  180. }
  181. if (ix < 0x41e00000) { /* |x| < 28 */
  182. x = fabsf(x);
  183. s = 1.0f/(x*x);
  184. if (ix < 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/
  185. R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
  186. ra5+s*(ra6+s*ra7))))));
  187. S = 1.0f+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
  188. sa5+s*(sa6+s*(sa7+s*sa8)))))));
  189. } else { /* |x| >= 1/.35 ~ 2.857143 */
  190. if (hx < 0 && ix >= 0x40c00000) /* x < -6 */
  191. return 2.0f-tiny;
  192. R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
  193. rb5+s*rb6)))));
  194. S = 1.0f+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
  195. sb5+s*(sb6+s*sb7))))));
  196. }
  197. GET_FLOAT_WORD(ix, x);
  198. SET_FLOAT_WORD(z, ix&0xfffff000);
  199. r = expf(-z*z - 0.5625f) * expf((z-x)*(z+x) + R/S);
  200. if (hx > 0)
  201. return r/x;
  202. return 2.0f - r/x;
  203. }
  204. if (hx > 0)
  205. return tiny*tiny;
  206. return 2.0f - tiny;
  207. }