log1p.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. /* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /* double log1p(double x)
  13. *
  14. * Method :
  15. * 1. Argument Reduction: find k and f such that
  16. * 1+x = 2^k * (1+f),
  17. * where sqrt(2)/2 < 1+f < sqrt(2) .
  18. *
  19. * Note. If k=0, then f=x is exact. However, if k!=0, then f
  20. * may not be representable exactly. In that case, a correction
  21. * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
  22. * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
  23. * and add back the correction term c/u.
  24. * (Note: when x > 2**53, one can simply return log(x))
  25. *
  26. * 2. Approximation of log1p(f).
  27. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  28. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  29. * = 2s + s*R
  30. * We use a special Reme algorithm on [0,0.1716] to generate
  31. * a polynomial of degree 14 to approximate R The maximum error
  32. * of this polynomial approximation is bounded by 2**-58.45. In
  33. * other words,
  34. * 2 4 6 8 10 12 14
  35. * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
  36. * (the values of Lp1 to Lp7 are listed in the program)
  37. * and
  38. * | 2 14 | -58.45
  39. * | Lp1*s +...+Lp7*s - R(z) | <= 2
  40. * | |
  41. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  42. * In order to guarantee error in log below 1ulp, we compute log
  43. * by
  44. * log1p(f) = f - (hfsq - s*(hfsq+R)).
  45. *
  46. * 3. Finally, log1p(x) = k*ln2 + log1p(f).
  47. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  48. * Here ln2 is split into two floating point number:
  49. * ln2_hi + ln2_lo,
  50. * where n*ln2_hi is always exact for |n| < 2000.
  51. *
  52. * Special cases:
  53. * log1p(x) is NaN with signal if x < -1 (including -INF) ;
  54. * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
  55. * log1p(NaN) is that NaN with no signal.
  56. *
  57. * Accuracy:
  58. * according to an error analysis, the error is always less than
  59. * 1 ulp (unit in the last place).
  60. *
  61. * Constants:
  62. * The hexadecimal values are the intended ones for the following
  63. * constants. The decimal values may be used, provided that the
  64. * compiler will convert from decimal to binary accurately enough
  65. * to produce the hexadecimal values shown.
  66. *
  67. * Note: Assuming log() return accurate answer, the following
  68. * algorithm can be used to compute log1p(x) to within a few ULP:
  69. *
  70. * u = 1+x;
  71. * if(u==1.0) return x ; else
  72. * return log(u)*(x/(u-1.0));
  73. *
  74. * See HP-15C Advanced Functions Handbook, p.193.
  75. */
  76. #include "libm.h"
  77. static const double
  78. ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
  79. ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
  80. two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
  81. Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  82. Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  83. Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  84. Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  85. Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  86. Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  87. Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  88. double log1p(double x)
  89. {
  90. double hfsq,f,c,s,z,R,u;
  91. int32_t k,hx,hu,ax;
  92. GET_HIGH_WORD(hx, x);
  93. ax = hx & 0x7fffffff;
  94. k = 1;
  95. if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
  96. if (ax >= 0x3ff00000) { /* x <= -1.0 */
  97. if (x == -1.0)
  98. return -two54/0.0; /* log1p(-1)=+inf */
  99. return (x-x)/(x-x); /* log1p(x<-1)=NaN */
  100. }
  101. if (ax < 0x3e200000) { /* |x| < 2**-29 */
  102. /* if 0x1p-1022 <= |x| < 0x1p-54, avoid raising underflow */
  103. if (ax < 0x3c900000 && ax >= 0x00100000)
  104. return x;
  105. #if FLT_EVAL_METHOD != 0
  106. FORCE_EVAL((float)x);
  107. #endif
  108. return x - x*x*0.5;
  109. }
  110. if (hx > 0 || hx <= (int32_t)0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
  111. k = 0;
  112. f = x;
  113. hu = 1;
  114. }
  115. }
  116. if (hx >= 0x7ff00000)
  117. return x+x;
  118. if (k != 0) {
  119. if (hx < 0x43400000) {
  120. STRICT_ASSIGN(double, u, 1.0 + x);
  121. GET_HIGH_WORD(hu, u);
  122. k = (hu>>20) - 1023;
  123. c = k > 0 ? 1.0-(u-x) : x-(u-1.0); /* correction term */
  124. c /= u;
  125. } else {
  126. u = x;
  127. GET_HIGH_WORD(hu,u);
  128. k = (hu>>20) - 1023;
  129. c = 0;
  130. }
  131. hu &= 0x000fffff;
  132. /*
  133. * The approximation to sqrt(2) used in thresholds is not
  134. * critical. However, the ones used above must give less
  135. * strict bounds than the one here so that the k==0 case is
  136. * never reached from here, since here we have committed to
  137. * using the correction term but don't use it if k==0.
  138. */
  139. if (hu < 0x6a09e) { /* u ~< sqrt(2) */
  140. SET_HIGH_WORD(u, hu|0x3ff00000); /* normalize u */
  141. } else {
  142. k += 1;
  143. SET_HIGH_WORD(u, hu|0x3fe00000); /* normalize u/2 */
  144. hu = (0x00100000-hu)>>2;
  145. }
  146. f = u - 1.0;
  147. }
  148. hfsq = 0.5*f*f;
  149. if (hu == 0) { /* |f| < 2**-20 */
  150. if (f == 0.0) {
  151. if(k == 0)
  152. return 0.0;
  153. c += k*ln2_lo;
  154. return k*ln2_hi + c;
  155. }
  156. R = hfsq*(1.0 - 0.66666666666666666*f);
  157. if (k == 0)
  158. return f - R;
  159. return k*ln2_hi - ((R-(k*ln2_lo+c))-f);
  160. }
  161. s = f/(2.0+f);
  162. z = s*s;
  163. R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
  164. if (k == 0)
  165. return f - (hfsq-s*(hfsq+R));
  166. return k*ln2_hi - ((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
  167. }