123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- /* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- /* double log1p(double x)
- *
- * Method :
- * 1. Argument Reduction: find k and f such that
- * 1+x = 2^k * (1+f),
- * where sqrt(2)/2 < 1+f < sqrt(2) .
- *
- * Note. If k=0, then f=x is exact. However, if k!=0, then f
- * may not be representable exactly. In that case, a correction
- * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
- * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
- * and add back the correction term c/u.
- * (Note: when x > 2**53, one can simply return log(x))
- *
- * 2. Approximation of log1p(f).
- * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- * = 2s + s*R
- * We use a special Reme algorithm on [0,0.1716] to generate
- * a polynomial of degree 14 to approximate R The maximum error
- * of this polynomial approximation is bounded by 2**-58.45. In
- * other words,
- * 2 4 6 8 10 12 14
- * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
- * (the values of Lp1 to Lp7 are listed in the program)
- * and
- * | 2 14 | -58.45
- * | Lp1*s +...+Lp7*s - R(z) | <= 2
- * | |
- * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- * In order to guarantee error in log below 1ulp, we compute log
- * by
- * log1p(f) = f - (hfsq - s*(hfsq+R)).
- *
- * 3. Finally, log1p(x) = k*ln2 + log1p(f).
- * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- * Here ln2 is split into two floating point number:
- * ln2_hi + ln2_lo,
- * where n*ln2_hi is always exact for |n| < 2000.
- *
- * Special cases:
- * log1p(x) is NaN with signal if x < -1 (including -INF) ;
- * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
- * log1p(NaN) is that NaN with no signal.
- *
- * Accuracy:
- * according to an error analysis, the error is always less than
- * 1 ulp (unit in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- *
- * Note: Assuming log() return accurate answer, the following
- * algorithm can be used to compute log1p(x) to within a few ULP:
- *
- * u = 1+x;
- * if(u==1.0) return x ; else
- * return log(u)*(x/(u-1.0));
- *
- * See HP-15C Advanced Functions Handbook, p.193.
- */
- #include "libm.h"
- static const double
- ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
- ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
- two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
- Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
- Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
- Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
- Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
- Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
- Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
- Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
- double log1p(double x)
- {
- double hfsq,f,c,s,z,R,u;
- int32_t k,hx,hu,ax;
- GET_HIGH_WORD(hx, x);
- ax = hx & 0x7fffffff;
- k = 1;
- if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
- if (ax >= 0x3ff00000) { /* x <= -1.0 */
- if (x == -1.0)
- return -two54/0.0; /* log1p(-1)=+inf */
- return (x-x)/(x-x); /* log1p(x<-1)=NaN */
- }
- if (ax < 0x3e200000) { /* |x| < 2**-29 */
- /* if 0x1p-1022 <= |x| < 0x1p-54, avoid raising underflow */
- if (ax < 0x3c900000 && ax >= 0x00100000)
- return x;
- #if FLT_EVAL_METHOD != 0
- FORCE_EVAL((float)x);
- #endif
- return x - x*x*0.5;
- }
- if (hx > 0 || hx <= (int32_t)0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
- k = 0;
- f = x;
- hu = 1;
- }
- }
- if (hx >= 0x7ff00000)
- return x+x;
- if (k != 0) {
- if (hx < 0x43400000) {
- STRICT_ASSIGN(double, u, 1.0 + x);
- GET_HIGH_WORD(hu, u);
- k = (hu>>20) - 1023;
- c = k > 0 ? 1.0-(u-x) : x-(u-1.0); /* correction term */
- c /= u;
- } else {
- u = x;
- GET_HIGH_WORD(hu,u);
- k = (hu>>20) - 1023;
- c = 0;
- }
- hu &= 0x000fffff;
- /*
- * The approximation to sqrt(2) used in thresholds is not
- * critical. However, the ones used above must give less
- * strict bounds than the one here so that the k==0 case is
- * never reached from here, since here we have committed to
- * using the correction term but don't use it if k==0.
- */
- if (hu < 0x6a09e) { /* u ~< sqrt(2) */
- SET_HIGH_WORD(u, hu|0x3ff00000); /* normalize u */
- } else {
- k += 1;
- SET_HIGH_WORD(u, hu|0x3fe00000); /* normalize u/2 */
- hu = (0x00100000-hu)>>2;
- }
- f = u - 1.0;
- }
- hfsq = 0.5*f*f;
- if (hu == 0) { /* |f| < 2**-20 */
- if (f == 0.0) {
- if(k == 0)
- return 0.0;
- c += k*ln2_lo;
- return k*ln2_hi + c;
- }
- R = hfsq*(1.0 - 0.66666666666666666*f);
- if (k == 0)
- return f - R;
- return k*ln2_hi - ((R-(k*ln2_lo+c))-f);
- }
- s = f/(2.0+f);
- z = s*s;
- R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
- if (k == 0)
- return f - (hfsq-s*(hfsq+R));
- return k*ln2_hi - ((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
- }
|