expm1.c 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. /* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /* expm1(x)
  13. * Returns exp(x)-1, the exponential of x minus 1.
  14. *
  15. * Method
  16. * 1. Argument reduction:
  17. * Given x, find r and integer k such that
  18. *
  19. * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
  20. *
  21. * Here a correction term c will be computed to compensate
  22. * the error in r when rounded to a floating-point number.
  23. *
  24. * 2. Approximating expm1(r) by a special rational function on
  25. * the interval [0,0.34658]:
  26. * Since
  27. * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
  28. * we define R1(r*r) by
  29. * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
  30. * That is,
  31. * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
  32. * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
  33. * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
  34. * We use a special Remez algorithm on [0,0.347] to generate
  35. * a polynomial of degree 5 in r*r to approximate R1. The
  36. * maximum error of this polynomial approximation is bounded
  37. * by 2**-61. In other words,
  38. * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
  39. * where Q1 = -1.6666666666666567384E-2,
  40. * Q2 = 3.9682539681370365873E-4,
  41. * Q3 = -9.9206344733435987357E-6,
  42. * Q4 = 2.5051361420808517002E-7,
  43. * Q5 = -6.2843505682382617102E-9;
  44. * z = r*r,
  45. * with error bounded by
  46. * | 5 | -61
  47. * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
  48. * | |
  49. *
  50. * expm1(r) = exp(r)-1 is then computed by the following
  51. * specific way which minimize the accumulation rounding error:
  52. * 2 3
  53. * r r [ 3 - (R1 + R1*r/2) ]
  54. * expm1(r) = r + --- + --- * [--------------------]
  55. * 2 2 [ 6 - r*(3 - R1*r/2) ]
  56. *
  57. * To compensate the error in the argument reduction, we use
  58. * expm1(r+c) = expm1(r) + c + expm1(r)*c
  59. * ~ expm1(r) + c + r*c
  60. * Thus c+r*c will be added in as the correction terms for
  61. * expm1(r+c). Now rearrange the term to avoid optimization
  62. * screw up:
  63. * ( 2 2 )
  64. * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
  65. * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
  66. * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
  67. * ( )
  68. *
  69. * = r - E
  70. * 3. Scale back to obtain expm1(x):
  71. * From step 1, we have
  72. * expm1(x) = either 2^k*[expm1(r)+1] - 1
  73. * = or 2^k*[expm1(r) + (1-2^-k)]
  74. * 4. Implementation notes:
  75. * (A). To save one multiplication, we scale the coefficient Qi
  76. * to Qi*2^i, and replace z by (x^2)/2.
  77. * (B). To achieve maximum accuracy, we compute expm1(x) by
  78. * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
  79. * (ii) if k=0, return r-E
  80. * (iii) if k=-1, return 0.5*(r-E)-0.5
  81. * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
  82. * else return 1.0+2.0*(r-E);
  83. * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
  84. * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
  85. * (vii) return 2^k(1-((E+2^-k)-r))
  86. *
  87. * Special cases:
  88. * expm1(INF) is INF, expm1(NaN) is NaN;
  89. * expm1(-INF) is -1, and
  90. * for finite argument, only expm1(0)=0 is exact.
  91. *
  92. * Accuracy:
  93. * according to an error analysis, the error is always less than
  94. * 1 ulp (unit in the last place).
  95. *
  96. * Misc. info.
  97. * For IEEE double
  98. * if x > 7.09782712893383973096e+02 then expm1(x) overflow
  99. *
  100. * Constants:
  101. * The hexadecimal values are the intended ones for the following
  102. * constants. The decimal values may be used, provided that the
  103. * compiler will convert from decimal to binary accurately enough
  104. * to produce the hexadecimal values shown.
  105. */
  106. #include "libm.h"
  107. static const double
  108. o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
  109. ln2_hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
  110. ln2_lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
  111. invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
  112. /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
  113. Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
  114. Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
  115. Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
  116. Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
  117. Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
  118. double expm1(double x)
  119. {
  120. double_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
  121. union {double f; uint64_t i;} u = {x};
  122. uint32_t hx = u.i>>32 & 0x7fffffff;
  123. int k, sign = u.i>>63;
  124. /* filter out huge and non-finite argument */
  125. if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */
  126. if (isnan(x))
  127. return x;
  128. if (sign)
  129. return -1;
  130. if (x > o_threshold) {
  131. x *= 0x1p1023;
  132. return x;
  133. }
  134. }
  135. /* argument reduction */
  136. if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
  137. if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
  138. if (!sign) {
  139. hi = x - ln2_hi;
  140. lo = ln2_lo;
  141. k = 1;
  142. } else {
  143. hi = x + ln2_hi;
  144. lo = -ln2_lo;
  145. k = -1;
  146. }
  147. } else {
  148. k = invln2*x + (sign ? -0.5 : 0.5);
  149. t = k;
  150. hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
  151. lo = t*ln2_lo;
  152. }
  153. x = hi-lo;
  154. c = (hi-x)-lo;
  155. } else if (hx < 0x3c900000) { /* |x| < 2**-54, return x */
  156. if (hx < 0x00100000)
  157. FORCE_EVAL((float)x);
  158. return x;
  159. } else
  160. k = 0;
  161. /* x is now in primary range */
  162. hfx = 0.5*x;
  163. hxs = x*hfx;
  164. r1 = 1.0+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
  165. t = 3.0-r1*hfx;
  166. e = hxs*((r1-t)/(6.0 - x*t));
  167. if (k == 0) /* c is 0 */
  168. return x - (x*e-hxs);
  169. e = x*(e-c) - c;
  170. e -= hxs;
  171. /* exp(x) ~ 2^k (x_reduced - e + 1) */
  172. if (k == -1)
  173. return 0.5*(x-e) - 0.5;
  174. if (k == 1) {
  175. if (x < -0.25)
  176. return -2.0*(e-(x+0.5));
  177. return 1.0+2.0*(x-e);
  178. }
  179. u.i = (uint64_t)(0x3ff + k)<<52; /* 2^k */
  180. twopk = u.f;
  181. if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */
  182. y = x - e + 1.0;
  183. if (k == 1024)
  184. y = y*2.0*0x1p1023;
  185. else
  186. y = y*twopk;
  187. return y - 1.0;
  188. }
  189. u.i = (uint64_t)(0x3ff - k)<<52; /* 2^-k */
  190. if (k < 20)
  191. y = (x-e+(1-u.f))*twopk;
  192. else
  193. y = (x-(e+u.f)+1)*twopk;
  194. return y;
  195. }