1
0

asin.c 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. /* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /* asin(x)
  13. * Method :
  14. * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
  15. * we approximate asin(x) on [0,0.5] by
  16. * asin(x) = x + x*x^2*R(x^2)
  17. * where
  18. * R(x^2) is a rational approximation of (asin(x)-x)/x^3
  19. * and its remez error is bounded by
  20. * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
  21. *
  22. * For x in [0.5,1]
  23. * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
  24. * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
  25. * then for x>0.98
  26. * asin(x) = pi/2 - 2*(s+s*z*R(z))
  27. * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
  28. * For x<=0.98, let pio4_hi = pio2_hi/2, then
  29. * f = hi part of s;
  30. * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
  31. * and
  32. * asin(x) = pi/2 - 2*(s+s*z*R(z))
  33. * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
  34. * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
  35. *
  36. * Special cases:
  37. * if x is NaN, return x itself;
  38. * if |x|>1, return NaN with invalid signal.
  39. *
  40. */
  41. #include "libm.h"
  42. static const double
  43. huge = 1.000e+300,
  44. pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
  45. pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
  46. pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
  47. /* coefficients for R(x^2) */
  48. pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
  49. pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
  50. pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
  51. pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
  52. pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
  53. pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
  54. qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
  55. qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
  56. qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
  57. qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
  58. double asin(double x)
  59. {
  60. double t=0.0,w,p,q,c,r,s;
  61. int32_t hx,ix;
  62. GET_HIGH_WORD(hx, x);
  63. ix = hx & 0x7fffffff;
  64. if (ix >= 0x3ff00000) { /* |x|>= 1 */
  65. uint32_t lx;
  66. GET_LOW_WORD(lx, x);
  67. if ((ix-0x3ff00000 | lx) == 0)
  68. /* asin(1) = +-pi/2 with inexact */
  69. return x*pio2_hi + x*pio2_lo;
  70. return (x-x)/(x-x); /* asin(|x|>1) is NaN */
  71. } else if (ix < 0x3fe00000) { /* |x|<0.5 */
  72. if (ix < 0x3e500000) { /* if |x| < 2**-26 */
  73. if (huge+x > 1.0)
  74. return x; /* return x with inexact if x!=0*/
  75. }
  76. t = x*x;
  77. p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
  78. q = 1.0+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
  79. w = p/q;
  80. return x + x*w;
  81. }
  82. /* 1 > |x| >= 0.5 */
  83. w = 1.0 - fabs(x);
  84. t = w*0.5;
  85. p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
  86. q = 1.0+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
  87. s = sqrt(t);
  88. if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */
  89. w = p/q;
  90. t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
  91. } else {
  92. w = s;
  93. SET_LOW_WORD(w,0);
  94. c = (t-w*w)/(s+w);
  95. r = p/q;
  96. p = 2.0*s*r-(pio2_lo-2.0*c);
  97. q = pio4_hi - 2.0*w;
  98. t = pio4_hi - (p-q);
  99. }
  100. if (hx > 0)
  101. return t;
  102. return -t;
  103. }