123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- /* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
- /*
- * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
- */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- #define _GNU_SOURCE
- #include "libm.h"
- float jnf(int n, float x)
- {
- int32_t i,hx,ix, sgn;
- float a, b, temp, di;
- float z, w;
- /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
- * Thus, J(-n,x) = J(n,-x)
- */
- GET_FLOAT_WORD(hx, x);
- ix = 0x7fffffff & hx;
- /* if J(n,NaN) is NaN */
- if (ix > 0x7f800000)
- return x+x;
- if (n < 0) {
- n = -n;
- x = -x;
- hx ^= 0x80000000;
- }
- if (n == 0) return j0f(x);
- if (n == 1) return j1f(x);
- sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
- x = fabsf(x);
- if (ix == 0 || ix >= 0x7f800000) /* if x is 0 or inf */
- b = 0.0f;
- else if((float)n <= x) {
- /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
- a = j0f(x);
- b = j1f(x);
- for (i=1; i<n; i++){
- temp = b;
- b = b*((float)(i+i)/x) - a; /* avoid underflow */
- a = temp;
- }
- } else {
- if (ix < 0x30800000) { /* x < 2**-29 */
- /* x is tiny, return the first Taylor expansion of J(n,x)
- * J(n,x) = 1/n!*(x/2)^n - ...
- */
- if (n > 33) /* underflow */
- b = 0.0f;
- else {
- temp = 0.5f * x;
- b = temp;
- for (a=1.0f,i=2; i<=n; i++) {
- a *= (float)i; /* a = n! */
- b *= temp; /* b = (x/2)^n */
- }
- b = b/a;
- }
- } else {
- /* use backward recurrence */
- /* x x^2 x^2
- * J(n,x)/J(n-1,x) = ---- ------ ------ .....
- * 2n - 2(n+1) - 2(n+2)
- *
- * 1 1 1
- * (for large x) = ---- ------ ------ .....
- * 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
- * x x x
- *
- * Let w = 2n/x and h=2/x, then the above quotient
- * is equal to the continued fraction:
- * 1
- * = -----------------------
- * 1
- * w - -----------------
- * 1
- * w+h - ---------
- * w+2h - ...
- *
- * To determine how many terms needed, let
- * Q(0) = w, Q(1) = w(w+h) - 1,
- * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
- */
- /* determine k */
- float t,v;
- float q0,q1,h,tmp;
- int32_t k,m;
- w = (n+n)/x;
- h = 2.0f/x;
- z = w+h;
- q0 = w;
- q1 = w*z - 1.0f;
- k = 1;
- while (q1 < 1.0e9f) {
- k += 1;
- z += h;
- tmp = z*q1 - q0;
- q0 = q1;
- q1 = tmp;
- }
- m = n+n;
- for (t=0.0f, i = 2*(n+k); i>=m; i -= 2)
- t = 1.0f/(i/x-t);
- a = t;
- b = 1.0f;
- /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
- * Hence, if n*(log(2n/x)) > ...
- * single 8.8722839355e+01
- * double 7.09782712893383973096e+02
- * long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
- * likely underflow to zero
- */
- tmp = n;
- v = 2.0f/x;
- tmp = tmp*logf(fabsf(v*tmp));
- if (tmp < 88.721679688f) {
- for (i=n-1,di=(float)(i+i); i>0; i--) {
- temp = b;
- b *= di;
- b = b/x - a;
- a = temp;
- di -= 2.0f;
- }
- } else {
- for (i=n-1,di=(float)(i+i); i>0; i--){
- temp = b;
- b *= di;
- b = b/x - a;
- a = temp;
- di -= 2.0f;
- /* scale b to avoid spurious overflow */
- if (b > 1e10f) {
- a /= b;
- t /= b;
- b = 1.0f;
- }
- }
- }
- z = j0f(x);
- w = j1f(x);
- if (fabsf(z) >= fabsf(w))
- b = t*z/b;
- else
- b = t*w/a;
- }
- }
- if (sgn == 1) return -b;
- return b;
- }
- float ynf(int n, float x)
- {
- int32_t i,hx,ix,ib;
- int32_t sign;
- float a, b, temp;
- GET_FLOAT_WORD(hx, x);
- ix = 0x7fffffff & hx;
- /* if Y(n,NaN) is NaN */
- if (ix > 0x7f800000)
- return x+x;
- if (ix == 0)
- return -1.0f/0.0f;
- if (hx < 0)
- return 0.0f/0.0f;
- sign = 1;
- if (n < 0) {
- n = -n;
- sign = 1 - ((n&1)<<1);
- }
- if (n == 0)
- return y0f(x);
- if (n == 1)
- return sign*y1f(x);
- if (ix == 0x7f800000)
- return 0.0f;
- a = y0f(x);
- b = y1f(x);
- /* quit if b is -inf */
- GET_FLOAT_WORD(ib,b);
- for (i = 1; i < n && ib != 0xff800000; i++){
- temp = b;
- b = ((float)(i+i)/x)*b - a;
- GET_FLOAT_WORD(ib, b);
- a = temp;
- }
- if (sign > 0)
- return b;
- return -b;
- }
|