123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- #include "pthread_impl.h"
- void __pthread_testcancel(void);
- int __pthread_mutex_lock(pthread_mutex_t *);
- int __pthread_mutex_unlock(pthread_mutex_t *);
- int __pthread_setcancelstate(int, int *);
- /*
- * struct waiter
- *
- * Waiter objects have automatic storage on the waiting thread, and
- * are used in building a linked list representing waiters currently
- * waiting on the condition variable or a group of waiters woken
- * together by a broadcast or signal; in the case of signal, this is a
- * degenerate list of one member.
- *
- * Waiter lists attached to the condition variable itself are
- * protected by the lock on the cv. Detached waiter lists are never
- * modified again, but can only be traversed in reverse order, and are
- * protected by the "barrier" locks in each node, which are unlocked
- * in turn to control wake order.
- *
- * Since process-shared cond var semantics do not necessarily allow
- * one thread to see another's automatic storage (they may be in
- * different processes), the waiter list is not used for the
- * process-shared case, but the structure is still used to store data
- * needed by the cancellation cleanup handler.
- */
- struct waiter {
- struct waiter *prev, *next;
- volatile int state, barrier;
- volatile int *notify;
- };
- /* Self-synchronized-destruction-safe lock functions */
- static inline void lock(volatile int *l)
- {
- if (a_cas(l, 0, 1)) {
- a_cas(l, 1, 2);
- do __wait(l, 0, 2, 1);
- while (a_cas(l, 0, 2));
- }
- }
- static inline void unlock(volatile int *l)
- {
- if (a_swap(l, 0)==2)
- __wake(l, 1, 1);
- }
- static inline void unlock_requeue(volatile int *l, volatile int *r, int w)
- {
- a_store(l, 0);
- if (w) __wake(l, 1, 1);
- else __syscall(SYS_futex, l, FUTEX_REQUEUE|FUTEX_PRIVATE, 0, 1, r) != -ENOSYS
- || __syscall(SYS_futex, l, FUTEX_REQUEUE, 0, 1, r);
- }
- enum {
- WAITING,
- SIGNALED,
- LEAVING,
- };
- int __pthread_cond_timedwait(pthread_cond_t *restrict c, pthread_mutex_t *restrict m, const struct timespec *restrict ts)
- {
- struct waiter node = { 0 };
- int e, seq, clock = c->_c_clock, cs, shared=0, oldstate, tmp;
- volatile int *fut;
- if ((m->_m_type&15) && (m->_m_lock&INT_MAX) != __pthread_self()->tid)
- return EPERM;
- if (ts && ts->tv_nsec >= 1000000000UL)
- return EINVAL;
- __pthread_testcancel();
- if (c->_c_shared) {
- shared = 1;
- fut = &c->_c_seq;
- seq = c->_c_seq;
- a_inc(&c->_c_waiters);
- } else {
- lock(&c->_c_lock);
- seq = node.barrier = 2;
- fut = &node.barrier;
- node.state = WAITING;
- node.next = c->_c_head;
- c->_c_head = &node;
- if (!c->_c_tail) c->_c_tail = &node;
- else node.next->prev = &node;
- unlock(&c->_c_lock);
- }
- __pthread_mutex_unlock(m);
- __pthread_setcancelstate(PTHREAD_CANCEL_MASKED, &cs);
- if (cs == PTHREAD_CANCEL_DISABLE) __pthread_setcancelstate(cs, 0);
- do e = __timedwait_cp(fut, seq, clock, ts, !shared);
- while (*fut==seq && (!e || e==EINTR));
- if (e == EINTR) e = 0;
- if (shared) {
- /* Suppress cancellation if a signal was potentially
- * consumed; this is a legitimate form of spurious
- * wake even if not. */
- if (e == ECANCELED && c->_c_seq != seq) e = 0;
- if (a_fetch_add(&c->_c_waiters, -1) == -0x7fffffff)
- __wake(&c->_c_waiters, 1, 0);
- oldstate = WAITING;
- goto relock;
- }
- oldstate = a_cas(&node.state, WAITING, LEAVING);
- if (oldstate == WAITING) {
- /* Access to cv object is valid because this waiter was not
- * yet signaled and a new signal/broadcast cannot return
- * after seeing a LEAVING waiter without getting notified
- * via the futex notify below. */
- lock(&c->_c_lock);
-
- if (c->_c_head == &node) c->_c_head = node.next;
- else if (node.prev) node.prev->next = node.next;
- if (c->_c_tail == &node) c->_c_tail = node.prev;
- else if (node.next) node.next->prev = node.prev;
-
- unlock(&c->_c_lock);
- if (node.notify) {
- if (a_fetch_add(node.notify, -1)==1)
- __wake(node.notify, 1, 1);
- }
- } else {
- /* Lock barrier first to control wake order. */
- lock(&node.barrier);
- }
- relock:
- /* Errors locking the mutex override any existing error or
- * cancellation, since the caller must see them to know the
- * state of the mutex. */
- if ((tmp = pthread_mutex_lock(m))) e = tmp;
- if (oldstate == WAITING) goto done;
- if (!node.next) a_inc(&m->_m_waiters);
- /* Unlock the barrier that's holding back the next waiter, and
- * either wake it or requeue it to the mutex. */
- if (node.prev)
- unlock_requeue(&node.prev->barrier, &m->_m_lock, m->_m_type & 128);
- else
- a_dec(&m->_m_waiters);
- /* Since a signal was consumed, cancellation is not permitted. */
- if (e == ECANCELED) e = 0;
- done:
- __pthread_setcancelstate(cs, 0);
- if (e == ECANCELED) {
- __pthread_testcancel();
- __pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0);
- }
- return e;
- }
- int __private_cond_signal(pthread_cond_t *c, int n)
- {
- struct waiter *p, *first=0;
- volatile int ref = 0;
- int cur;
- lock(&c->_c_lock);
- for (p=c->_c_tail; n && p; p=p->prev) {
- if (a_cas(&p->state, WAITING, SIGNALED) != WAITING) {
- ref++;
- p->notify = &ref;
- } else {
- n--;
- if (!first) first=p;
- }
- }
- /* Split the list, leaving any remainder on the cv. */
- if (p) {
- if (p->next) p->next->prev = 0;
- p->next = 0;
- } else {
- c->_c_head = 0;
- }
- c->_c_tail = p;
- unlock(&c->_c_lock);
- /* Wait for any waiters in the LEAVING state to remove
- * themselves from the list before returning or allowing
- * signaled threads to proceed. */
- while ((cur = ref)) __wait(&ref, 0, cur, 1);
- /* Allow first signaled waiter, if any, to proceed. */
- if (first) unlock(&first->barrier);
- return 0;
- }
- weak_alias(__pthread_cond_timedwait, pthread_cond_timedwait);
|